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ABSTRACT
The work introduces a family of new risk measures, “VaR to the power of t”. The aim of the work is to study the properties 
of this family of measures and to derive formulas to calculate them. The study used methods for assessing financial risks 
by risk measures VaR and ES. As a result, the author proposed a new tool to measure catastrophic financial risks — “VaR 
to the power of t”. The study proved that for the measuring, it is sufficient to calculate the common risk measure VaR 
with the confidence probability changed in a certain way. The author concludes that this family of measures should 
find application in solving the problem of penetrating risk events with low probabilities, but with catastrophic financial 
losses. The study results may be of use to the regulator to assess the capital adequacy of financial institutions. If t > 1, 
these measures prove to be more conservative risk measures of catastrophic losses than the known risk measures VaR, 
ES and GlueVaR.
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INTRODUCTION
Financial and insurance risk management prac-
titioners typically have to deal with two oppos-
ing demands: on the one hand, they want busi-
ness units to achieve or outperform the objec-
tives fixed by the firm’s executive committee, yet, 
on the other, they are responsible for control-
ling their economic risks. Finding a trade-off be-
tween these two demands is the challenging task 
that risk managers face on a daily basis. At the 
same time, they need to decide how risk should 
be quantified.

Financial and insurance firms are subject to 
the capital requirements established by regula-
tors’ guidelines and directives. These require-
ments are typically equal to, or proportional to, 
a risk measure value that determines a mini-
mum cushion of economic liquidity. The selec-
tion of such risk measures and tolerance levels 
is crucial therefore from the regulators’ point of 
view.

Financial institutions and insurance com-
panies prefer to minimize the level of capital 
reserves required by solvency regulations, be-
cause they must contend with many restric-
tions on how this capital can be invested and, 
as such, the return on their capital reserves is 
usually lower than that provided by other op-
portunities. For this reason, companies typi-
cally favor regulations that impose risk meas-
ures and tolerance levels that are not overly 
conservative.

Managers also prefer simple, straightforward 
risk measures rather than more complicated al-
ternatives, since they claim that the former are 
more easily communicated.

From the regulators’ perspective, controlling 
the risk of financial institutions and insurance 
companies is fundamental in order to protect 
consumers and investors, which may have con-
flicting objectives. Strict solvency capital re-

quirements may limit the capacity of firms, but 
they also reassure consumers and guarantee the 
position of the financial industry in the econ-
omy. Thus, the debate as to what constitutes 
a suitable risk measure and what represents a 
suitable tolerance level is interminable, without 
their apparently having been much investigation 
as to what might represent an appropriate com-
promise.

VaR is currently a classic market risk meas-
ure widely adopted and developed both in theory 
and in practice (for example, [1–3]). VaR esti-
mates the threshold that is not overcome in a 
given (large) percentage of observations over a 
given period. According to the Basel Commit-
tee, it was included as a mandatory risk meas-
ure in assessing not only market risk, but also 
other risks (for example, credit risk and liquidity 
risk). The VaR measure is used in assessing vari-
ous risks in corporate governance (for example, 
[4–5]).

Value-at-Risk (VaR) has been adopted as a 
standard tool to assess the risk and to calculate 
capital requirements in the financial industry. 
However, VaR is known to present a number of 
pitfalls when applied in practice. A disadvantage 
when using VaR in the financial context is that 
the capital requirements for catastrophic losses 
based on the measure can be underestimated, i. e. 
the necessary reserves in adverse scenarios may 
well be less than they should be.

The underestimation of capital requirements 
may be aggravated when fat-tailed losses are in-
correctly modeled by mild-tailed distributions. 
There are attempts to overcome this kind of 
model risk when using VaR or, at least, to quan-
tify the risk related to the modelling [6].

A second drawback is that the VaR may fail 
the subadditivity property. A risk measure is 
subadditive when the aggregated risk is less 
than or equal to the sum of individual risks.
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Subadditvity is an appealing property when 
aggregating risks in order to preserve the benefits 
of diversification. VaR is subadditive for elliptical-
ly distributed losses [7]. However, the subadditiv-
ity of VaR is not guaranteed for any distribution 
not included in the class of elliptical [8, 9].

Since the end of the 20th century, a measure 
of expected shortfall, conditional VaR, a meas-
ure of expected tail losses exceeding VaR, often 
defined as ES (or TVaR) has been widely used in 
theory and practice of risk management (for ex-
ample, [1–3]).

The ES measures average losses in the most 
adverse cases rather than just the minimum 
loss, as the VaR does. Therefore, capital reserves 
based on the ES have to be considerably higher 
than those based on VaR and significant dif-
ferences in the size of capital reserves can be 
obtained depending on which risk measure is 
adopted.

The ES risk measure does not suffer the two 
drawbacks discussed above for VaR and, as such, 
would appear to be a more powerful measure for 
assessing the actual risks faced by companies 
and financial institutions. However, ES has not 
been widely accepted by practitioners in the fi-
nancial and insurance industry. VaR is currently 
the risk measure contemplated in the European 
solvency regulation.

In relatively recent papers [10, 11], a new 
family of risk measures GlueVaR was proposed 
and examined in the class of distortion risk 
measures.

The search for various risk measures that 
satisfy certain needs has a rather long history 
(general approaches to this problem are pre-
sented by [12, 13]). One of the significant classes 
of examined risk measures is the distortion risk 
measures introduced by S. Wang [14, 15]. They 
are closely related to the distortion expectation 
theory.

Tsanakas and Desli [16] provide a review on 
how risk measures can be interpreted from sev-
eral perspectives, and include a clarifying expla-
nation of the relationship between distortion 
risk measures and distortion expectation theory.

A detailed literature review of distortion risk 
measures is available in the works by M. Denuit 
et al., A. Balbas et al. [17, 18].

J. Belles-Sampera et al. [10, 11] define a new 
family of risk measures, called GlueVaR, within 
the class of distortion risk measures. The au-
thors find out their relationship with VaR and ES, 
and receive analytical closed-form expressions 
for many statistical distributions that are fre-
quently used in financial and insurance applica-
tions. Tail-subadditivity is investigated and it is 
shown that some GlueVaR risk measures satisfy 
this property. An interpretation in terms of risk 
attitudes is provided and a discussion is given on 
the applicability in non-financial problems such 
as health, safety, environmental or catastrophic 
risk management.

In work [19], the author introduced the concept 
of new measure (2)VaR . It assesses risks more con-
servatively than VaR, and even than ES, as some 
threshold value that cannot be overcome with a 
given probability (like VaR), and not as an average 
value from the set of “bad”, tail loss values (like 
ES). For this risk measure, closed computational 
formulas were obtained in cases of uniform and 
triangular loss distributions.

The author continued studying (2)VaR risk 
measure in work [20]. A general, independent of 
loss distribution formula was obtained for it and 
expressed it through the common risk measure 
VaR with the confidence probability changed in 
a certain way. Moreover, the study investigated 
the relationships between risk assessments by 

(2)VaR  and other known risk measures, such as 
ES. It turned out that the ratio under study often 
depends on the assumption of the loss distribu-
tion law, and sometimes on confidence prob-
abilities. It was also revealed that (2)VaR  most 
often provides a more conservative risk assess-
ment than ES [20].

The current work continues the previous re-
search by the author. It introduces the concept 
of risk measures VaR to any power 1t ≥ , derives 
formulas to calculate ( )tVaR as the common VaR 
with the confidence probability changed in a 
certain way. The work discusses possibilities of 
practical application of this family of risk meas-
ures.

Thus, we propose a new family of risk meas-
ures called ( )tVaR , formulas to calculate them, 
which lead to the fact that all existing models 
and tools to calculate the common VaR are also 
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applicable to any measure of the ( )tVaR family 
of measures. The paper gives analytical expres-
sions of ( )tVaR closed computational formula for 
some of the distribution functions most often 
used in financial and insurance applications. 
The relationships between ( )tVaR at t > 1 and 
risk measures VaR and ES are explained.

This new family of measures is associated 
with the most popular risk measures and in-
cludes a sufficient number of parameters to con-
sider management and regulatory requirements 
for risk. Therefore, this article is motivated by 
an attempt to answer the following question: is 
it possible to develop risk measures that would 
provide a risk assessment meeting various needs 
and allowing penetration into the risk assess-
ment of arbitrarily high catastrophe, exceeding 
the capabilities of both VaR and ES?

The ( )tVaR  family of risk measures is defined 
as a function with two parameters: confidence 
probability p and exponent t. By calibrating 
these parameters, VaR risk measures can be 
matched to a wide variety of contexts. In par-
ticular, if the level of confidence is fixed, the new 
family contains risk measures between VaR and 
ES and can adequately show the risks of moder-
ate catastrophe. However, in certain situations, 
much more conservative risk measures than 
even ES may be preferred. We show that these 
highly conservative risk measures can also be 
defined using the ( )tVaR family. We obtain closed 
analytical expressions of ( )tVaR closed formula, 
for statistical distributions commonly used in 
the financial context. These expressions should 
allow practitioners to make a simple transition 
from using VaR and ES to risk measures ( )tVaR .

The concept of risk measures 
VaR to the power of n (VaR(n), n — 
is a natural number) and the 
derivation of computational 

formulas
Work [19] introduced a new risk measure sup-
plementing VaR — VaR squared ( (2)

pVaR ), which 
tracks rare tail risks associated with serious fi-
nancial losses.

(2)
pVaR  risk measure with confidence proba-

bility p (see [19]) is a value that will be exceeded 
by profit (not exceeded by losses), provided that 

its threshold value is not exceeded (exceeded) 
with confidence probability p for a given time.

Work [20] provides a formula to calculate this 
risk measure.

Let X be the value of the windfall profit for 
this asset for a given period of time (–X shows 
the value of the corresponding losses).

The following formula was proved in work 
[20], which allows calculating (2)

pVaR  as VaR 
with the confidence probability changed in a 
certain way:

	     2

(2)

1 (1 )
[ ] [ ]p p

VaR X VaR X
− −

= . � (1)

Thus, to calculate (2)
pVaR , we should calculate 

VaR with the confidence probability 21 (1 ) .p− −
In particular, if the loss distribution law is 

known (for example, normal), then (2)
pVaR  can 

be calculated by formula (1) with the Monte 
Carlo method or by the known formula for VaR 
under this assumption and by formula (1), which 
will lead to the following result:

		  2

(2) 0.1

1 (1 )
,p p

VaR Vk
− −

= ⋅σ � (2)

where V is the denomination of the position at 
time 0; σ− is the standard deviation of profit-
ability in the time period over which we estimate 

(2)
pVaR ; 0.1

qk  is the quantile of a standardized 
distribution of returns with confidence prob-
ability q.

If the distribution of returns is not known, 
(2)
pVaR  can be calculated using the empirical 

loss distribution and formula (1).
In formula (2) we used the formula for cal-

culating the relative VaR, i. e. the maximum de-
viation in an unfavorable direction from the ex-
pected profit with a given probability for a given 
(unit) time.

The concept of (2)VaR  in work [20] was gen-
eralized considering that confidence probability
p′ in determining (2)VaR , i. e. the threshold val-

ue that the profit will not exceed (the loss will 
exceed) under the condition of non-exceeding 
(exceeding) pVaR with probability p′ , may differ 
from p. This risk measure was defined as (2)

,p pVaR ′  
and the following formula was obtained:

	    (2)
, 1 (1 )(1 )[ ] [ ]p p p pVaR X VaR X′ ′− − −= . � (3)
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We introduce the concept of risk measures 
VaR to the power of n, where n is any natural 
number. We will introduce these measures in-
ductively, sequentially, moving from VaR to 

(2)VaR , then to (3)VaR , and so on, and the we 
will reach ( )nVaR . At the same time, we will 
deal with the sequential derivation of formulas 
for risk measures VaR to the power of n, ( )nVaR .

To begin with, we represent the common VaR 
in the form:

1

(1)[ ] [ ] [ ],p p pVaR X VaR X VaR X= =  

where 1 1 (1 ).p p= − −

Then, according to formula (1)

2

(2)[ ] [ ]p pVaR X VaR X=  , where 2
2 11 (1 ) .p p= − −

Then, according to the definition, we assume 
that VaR squared is just 

2

(2)
, [ ].p pVaR X  So, we get 

that

2 3

(3) (2)
,[ ] [ ] [ ],p p p pVaR X VaR X VaR X= =  

w h e r e  a c c o r d i n g  t o  f o r m u l a  ( 3 ) 

3 21 (1 )(1 )p p p= − − − , but then using formula 
(1) we have:

       
3 2

2 3

1 (1 )(1 )

1 (1 [1 (1 ) ])(1 ) 1 (1 ) .

p p p

p p p

= − − − =

= − − − − − = − −

In the same way, defining VaR to the power of 
four as 

3

(2)
, [ ]p pVaR X , we get:

3 4

(4) (2)
,[ ] [ ] [ ],p p p pVaR X VaR X VaR X= =  where 

according to formula (3) 4 31 (1 )(1 )p p p= − − − , but 
then using formula (1) we have:

4 3

3 4

1 (1 )(1 )

1 (1 [1 (1 ) ])(1 ) 1 (1 ) .

p p p

p p p

= − − − =

= − − − − − = − −

By proceeding in the same way, we introduce 
risk measure VaR to the power of n for any natural 
number n as 

1

(2)
, [ ]

np pVaR X
−

, where 1
�1 1 (1 )n

np p −= − −  
and we get:

1,

( ) (2)[ ] [ ] [ ],
n p n

n
p p pVaR X VaR X VaR X

−
= =  where ac-

cording to formula (3) 11 (1 )(1 )n np p p−= − − −  , but 
then using formula (1) we have:

1

1

1 (1 )(1 )

1 (1 [1 (1 ) ])(1 ) 1 (1 ) .

n n

n n

p p p

p p p

−

−

= − − − =

= − − − − − = − −

Thus, we introduced the concept of risk meas-
ures VaR to the power of n for any natural num-
ber n and obtained a formula that reduces their 
calculations to calculating the common risk 
measure VaR with the confidence probability 
changed in a certain way.

	      ( )

1 (1 )
[ ] [ ]n

n
p p

VaR X VaR X
− −

= . � (4)

To calculate ( )n
pVaR , it is just necessary to 

calculate VaR with the confidence probability 
1 (1 ) .np− −

With risk measures ( )[ ]n
pVaR X  the risk manager 

may delve into studying the left tail of the profit 
distribution law for confidence probabilities that 
are multiples of initial confidence probability p, 
and get information about less probable, but more 
catastrophic risks.

Consequence
For any value of confidence probability (0,1]p∈  
with unlimited growth of n, the value of risk 
measure ( )[ ]n

pVaR X  unlimitedly approaches the 
left (right) border of profit distribution carrier X 
(loss –X).

Proof
This follows from the fact that for the indicated 
values of p 1 (1 ) 1, at .np n− − → →∞

Table 1 provides the table for the calculation 
formulas for of ( ),n

pVaR при at n = 2, 3, and 4 and certain 
confidence probabilities.

Table 1 shows that with growth of n, the con-
fidence probability of the corresponding com-
mon measure VaR tends to 100%. The faster it 
is growing, the greater is confidence probability 

( )[ ]n
pVaR X  with which the risk measure is calcu-

lated. Therefore, the values of ( )[ ]n
pVaR X quickly 

approach the left (right) border of profit distri-
bution carrier X (loss –X)., i. e. show losses with 
increasingly catastrophic and less likely risk 
events.
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We will test the results on the known loss 
distributions and the corresponding numerical 
examples.

Uniform  
distribution

According to study [21], if profit value X is uni-
formly distributed in interval (a, b), then for any 
confidence probability p

[ ] (1 )pVaR X pa p b= + − .

We rewrite this expression as follows:

[ ] ( ) (1 )( )pVaR X b b a p a p b a= − − = + − − .

Then according to formula (4), we have:

2

(2)

1 (1 )

2 2

[ ] [ ]

( )(1 (1 ) ) (1 ) ( )

p p
VaR X VaR X

b b a p a p b a

− −
= =

= − − − − = + − − .

Note that the expression naturally coincides 
with the expression obtained by the straight-

Table 1
Expression for ( )[ ]n

pVaR X  through the common risk measure VaR at various values 
of n and confidence probabilities p

p = 90% p = 95% p = 99%

(2)[ ]pVaR X 99%[ ]VaR X 99.75%[ ]VaR X 99.99%[ ]VaR X

(3)[ ]pVaR X 99.9%[ ]VaR X 99.9875%[ ]VaR X 99.9999%[ ]VaR X

(4)[ ]pVaR X 99.99%[ ]VaR X 99.999%[ ]VaR X 100%[ ]VaR X≈

Source: the author’s calculations.

Table 2
Values ( )[ ]n

pVaR X  at various values of n and p, assuming uniform distribution  
of variable X at interval (a, b)

p = 90% p = 95% p = 99%

[ ]pVaR X 110 105 101

(2)[ ]pVaR X 101 100.25 100.01

(3)[ ]pVaR X 100.1 100.0125 100.0001

(4)[ ]pVaR X 100.01 100.000625 ≈100

Source: the author’s calculations.
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forward conclusion from the definition of 
(2)[ ]pVaR X  in work [19] [formula (2)].

Similarly, we get the expression for ( )[ ]n
pVaR X :

( )

1 (1 )
[ ] [ ]

( )(1 (1 ) ) (1 ) ( )

n

n
p p

n n

VaR X VaR X

b b a p a p b a

− −
= =

= − − − − = + − − .

I.e.

	 ( )[ ] (1 ) ( )n n
pVaR X a p b a= + − − . � (5)

We can rewrite formula (5) as follows:

( )[ ] (1 (1 ) ) (1 ) ,n n n
pVaR X p a p b= − − + −

which means that at uniform profit distribution 
X, value ( )[ ]n

pVaR X is presented as a weighted 
average between the ends of interval (a, b), and 
the weight of the left end rapidly tends to 1 with 
growth of n. Therefore, the value of ( )[ ]n

pVaR X  
quickly approaches the left (right) border of 
profit distribution carrier X (loss –X).

This is illustrated on Example 1 (Table 2).
Example 1
We calculate ( )[ ]n

pVaR X at n = 1, …, 4, p = 90%, 
95% and 99%, if a = 100 units, and b = 200 units.

Triangular distribution
According to study [21], if random variable X is 
subordinate to the triangular distribution with a 
carrier coinciding with interval (a, b) and a ver-
tex, whose projection onto the carrier is repre-
sented by point v∈(a, b), then:

(1 )( )( ),

(1 )
[ ]

( )( ),

(1 ) .

p

a p b a a

pa p b
VaR X

b p b a b

pa p b

 + − − ν −


ν ≥ + −= 
− − −ν

 ν ≤ + −

if

if

We rewrite this expression as follows:

(1 )( )( ),

(1 )( )
[ ]

(1 (1 ))( )( ),

(1 )( ).

p

a p b a a

a p b a
VaR X

b p b a b

a p b a

 + − − ν −


ν ≥ + − −= 
− − − − −ν

 ν ≤ + − −

if

if

Then according to formula (4),

2

(2) 2
2[ ] [ ], where 1 (1 ) ,p pVaR X VaR X p p= = − −

we have:

2

2(2)

2

2

(1 )( )( ),

if (1 )( )
[ ]

(1 (1 ))( )( ),

if (1 )( )

p

a p b a a

a p b a
VaR X

b p b a b

a p b a

 + − − ν −


ν ≥ + − −
= 

− − − − −ν
 ν ≤ + − −

or

2

2
(2)

2

2

(1 ) ( )( ),

if (1 ) ( )
[ ]

(1 (1 ) )( )( ),

(1 ) ( ).

p

a p b a a

a p b a
VaR X

b p b a b

a p b a

 + − − ν −

 ν ≥ + − −

= 
− − − − −ν


ν ≤ + − −if

This expression can also be written as follows:

2
(2)

2

(1 ) ( )( ),

(1 ) ( )
[ ]

(2 )( )( ),

(1 ) ( ).

p

a p b a a

a p b a
VaR X

b p p b a b

a p b a

 + − − ν −


ν ≥ + − −
= 

− − − −ν
 ν ≤ + − −

if

if

Note that the expression naturally coincides 
with the expression obtained by the straight-
forward conclusion from the definition of 

(2)[ ]pVaR X  in work [19] [formula (2)].
Similarly, we get the expression for ( )[ ]n

pVaR X :

( )

1 (1 )
[ ] [ ]n

n
p p

VaR X VaR X
− −

= =

             

(1 ) ( )( ),

(1 ) ( )

(1 (1 ) )( )( ),

(1 ) ( ).

n

n

n

n

a p b a a

a p b a

b p b a b

a p b a

 + − − ν −

 ν ≥ + − −

= 
− − − − −ν


ν ≤ + − −

if

if

� (6)

We study the behavior of these risk measures 
depending on the values of distribution mode ν
and confidence probability in Examples 2–4 (Ta-
bles 3–5).

Example 2
We calculate ( )[ ]n

pVaR X at n = 1, …, 4, p = 90%, 
95% and 99%, if a = 100 units, b = 200 units and 

105ν = units.
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Table 3
Values ( )[ ]n

pVaR X  at various values of n and p, assuming triangular distribution  
of variable X at interval (a, b)

p = 90% p = 95% p = 99%

[ ]pVaR X 107.0711 105 102.2361

(2)[ ]pVaR X 102.2361 101.118 100.2236

(3)[ ]pVaR X 100.7071 100.25 100.0224

(4)[ ]pVaR X 100.2236 100.05559 100.0022

Source: the author’s calculations.

Table 4
Values ( )[ ]n

pVaR X  at various values of n and p, assuming triangular distribution  
of variable X at interval (a, b)

p = 90% p = 95% p = 99%

[ ]pVaR X 122.3607 115.8114 107.0711

(2)[ ]pVaR X 107.0711 103.5355 100.7071

(3)[ ]pVaR X 102.2361 100.7906 100.0707

(4)[ ]pVaR X 100.7071 100.1768 100.0071

Source: the author’s calculations.

Table 5
Values ( )[ ]n

pVaR X  at various values of n and p, assuming triangular distribution  
of variable X at interval (a, b)

p = 90% p = 95% p = 99%

[ ]pVaR X 130.8221 121.7945 109.7468

(2)[ ]pVaR X 109.7468 104.8734 100.9747

(3)[ ]pVaR X 103.0822 101.0897 100.0975

(4)[ ]pVaR X 100.9747 100.2437 100.0097

Source: the author’s calculations.
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Example 3
We calculate ( )[ ]n

pVaR X at n = 1, …, 4, p = 90%, 
95% and 99%, if a = 100 units, b = 200 units and 

105ν = units.
Example 4
We calculate ( )[ ]n

pVaR X at n = 1, …, 4, p = 90%, 
95% and 99%, if a = 100 units, b = 200 units and 

195ν = units.
Examples 2–4 show that with growth of 

n, ( )[ ]n
pVaR X  quickly enough tends to the left 

border of the profit distribution carrier, and the 
greater the confidence probability p is, the faster 
this happens. The closer distribution mode ν is 
to the left border of the profit distribution car-
rier, the faster ( )[ ]n

pVaR X tends to the left border 
of the profit distribution carrier for all values of 
confidence probability p, i. e. the more risky this 
position is at all levels of catastrophe.

Normal distribution
As we know (for example, [1–3]), assuming that 
the profit distribution is normal, VaR (relative 
VaR) is calculated by formula

0.1[ ]p pVaR X V k= σ ,

where V is the denomination of the position at 
time 0; σ− is the standard deviation of profit-
ability in the time period over which we esti-
mate VaR; 0.1

qk  is the quantile of a standardized 
distribution of returns with confidence prob-
ability q.

Then according to formula (4), we have

		  ( ) 0.1

1 (1 )
[ ] .n

n
p p

VaR X V k
− −

= σ  � (7)

We investigate the behavior of these risk 
measures depending on confidence probability 
p (Table 6). Since only quantiles depend on the 
confidence probability, the example provides the 
dependence of the corresponding quantiles on 
confidence probabilities.

We see that for each confidence probability 
p, the corresponding quantiles increase with 
growth of n of risk measures ( )[ ]n

pVaR X . Thus, 
for large n, risk measures ( )[ ]n

pVaR X evaluate 
increasingly catastrophic risks, and the greater 
confidence probabilities p are, the greater the 
assessment of such risk measures is.

Poly-VaR risk measures
We introduce a family of measures generalizing 
measures ( )[ ]n

pVaR X , and will allow the confi-
dence probabilities used in constructing VaR to 
various powers to vary.

To begin with, we present the common risk 
measure VaR as follows:

1 1 1[ ] , where 1 (1 ).p pVaR X VaR p p p p= = = = − −




Using formula (3), we introduce the concept 
of poly-VaR squared:

1 2 2

(2)
, 2

1 2

[ ] [ ], where 

1 (1 )(1 ).

p p pVaR X VaR X p

p p

= =

= − − −




Thus, poly-VaR to the third power is defined 
as follows:

1 2 3 2 3 3

(3) (2)
, , ,[ ] [ ] [ ], p p p p p pVaR X VaR X VaR X= =

 

where

3 2 3

1 2 3

1 2 3

1 (1 )(1 )

1 (1 [1 (1 )(1 )])(1 )

1 (1 )(1 )(1 ).

p p p

p p p

p p p

= − − − =

= − − − − − − =

= − − − −

 

Further, poly-VaR to the power of n is defined 
as follows:

1 2 1

( ) (2)
, ,..., ,[ ] [ ] [ ], 

n n n n

n
p p p p p pVaR X VaR X VaR X

−
= =

 

where

1

1 2 1

1

1 (1 )(1 )

1 (1 [1 (1 )(1 )...(1 )])(1 )

1 (1 )...(1 ).

n n n

n n

n

p p p

p p p p

p p

−

−

= − − − =

= − − − − − − − =

= − − −

 

That is, the formula for poly-VaR to the power of 
n is as follows:

1 2 1 2

( )
, ,..., 1 (1 )(1 )...(1 )[ ] [ ], 

n n

n
p p p p p pVaR X VaR X− − − −=  (8)

expressing it through the common risk measure 
VaR with the confidence probability recalculated 
in a certain way.

VaR risk measure to any valid 
power t ≥ 1, Var(t)

p [X ]
Any real number 1t ≥ can be unambiguously 
represented as follows ,t k= +α  where k is a 
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natural number; and α  — is a real number, with 
0 1≤ α < . Obviously, k is the integer part of t, 
and α is its fractional part.

Then we can determine VaR to any valid 
power 1t ≥ , ( )[ ]t

pVaR X as follows

	           ( ) ( 1)
, ,..., ,[ ]

k

t k
p p p p pVaR X VaR +

α=


.�  (9)

In particular, applying (9) and (8), we have:

(1 ) (2)
, 1 (1 )(1 )[ ] [ ] [ ]p p p p pVaR X VaR X VaR X+α
α − − −α= =  (10)

and

2

(2 ) (3)
, , 1 (1 ) (1 )

[ ] [ ] [ ]p p p p p p
VaR X VaR X VaR X+α

α − − −α
= =  (11)

etc.,

( ) ( )

1 (1 ) (1 )
[ ] [ ] [ ].k

t k
p p p p

VaR X VaR X VaR X+α
− − −α

= =  (12)

Table 6

Values ( )[ ]n
pVaR X (through values of corresponding 0.1

qk ) at various values of n and p, assuming normal 
distribution of variable X

p = 90% p = 95% p = 99%

0.1
pk  

( )pVaR
1.2816 1.6449 2.3263

2

0.1

1 (1 )p
k

− −

 
 

(2)( )pVaR
2.3264 2.8070 3.7190

3

0.1

1 (1 )p
k

− −

 

(3)( )pVaR
3.0902 3.6623 4.7534

4

0.1

1 (1 )p
k

− −

 

(4)( )pVaR
3.7190 4.3687 5.6120

Source: the author’s calculations.

Table 7
Values ( )[ ]t

pVaR X  at various values of t and p, assuming uniform distribution  
of variable X at interval (a, b)

p = 90% p = 95% p = 99%

[ ]pVaR X 110 105 101

(1.1)[ ]pVaR X 109.1 104.525 100.901

(1.5)[ ]pVaR X 105.5 102.625 100.505

(1.9)[ ]pVaR X 101.9 100.725 100.109

Source: the author’s calculations.
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With risk measures ( )[ ]t
pVaR X , the risk man-

ager may delve into studying the left tail of 
the profit distribution law for confidence prob-
abilities that are multiples of initial confidence 
probability p, and get very detailed information 
about less probable, but more catastrophic risks.

Uniform distribution  
(VaR to a fractional power)

Applying formulas (10) and (11) in the case of a 
uniform distribution, we have:

(1 )[ ] (1 )(1 )( )pVaR X a p p b a+α = + − −α −

and

(2 ) 2[ ] (1 ) (1 )( )pVaR X a p p b a+α = + − −α − .

Example 5 (Table 7)
We calculate ( )[ ]t

pVaR X at t = 1; 1.1; 1.5; 1.9, 
and p = 90%, 95% and 99%, if a = 100 units, 
b = 200 units.

Example 6 (Table 8)
We calculate ( )[ ]t

pVaR X at t = 2; 2.1; 2.5; 2.9, 
and p = 90%, 95% and 99%, if a = 100 units, 
b = 200 units.

Examples 5 and 6 show that at growingα , risk 
measures (1 )[ ]pVaR X+α and (2 )[ ]pVaR X+α  tend to 
the left border of the profit distribution carrier, 
and the greater the confidence probability p is, 
the faster this happens. However, this happens 
more slowly than when moving from [ ]pVaR X  
to (2)[ ]pVaR X , and, accordingly, from (2)[ ]pVaR X  
to (3)[ ]pVaR X  (compare with Example 1). That 
is, applying VaR risk measures to the power of 

(1 )+α  and (2 )+α  at various α , the risk man-
ager, depending on the risk appetite of his com-
pany, can rather subtly examine the risks in the 
left tail of the profit distribution.

Triangular distribution 
(VaR to a fractional power)

Applying formulas (10) and (11) in the case of a 
uniform distribution, we have:

(1 )

(1 )(1 )( )( ),

(1 )(1 )( )
[ ]

� (1 (1 ))(1 )( )( ),

(1 )(1 )( )

p

a p p b a a

a p p b a
VaR X

b p p b a b

a p p b a

+α

 + − −α − ν −


ν ≥ + − −α −= 
− − −α − −ν

 ν ≤ + − −α −

if

if

and

(2 )[ ]pVaR X+α =

2

2

2

2

(1 ) (1 )( )( ),

if (1 ) (1 )( )

� (1 (1 ) (1 ))( )( ),

if (1 ) (1 )( )

a p p b a a

a p p b a

b p p b a b

a p p b a

 + − −α − ν −

 ν ≥ + − −α −

= 
− − −α − −ν


ν ≤ + − −α −

Example 7a (Table 9)
We calculate ( )[ ]t

pVaR X at t = 1; 1.1; 1.5; 
1.9, and p = 90%, 95% and 99%, if a = 100 
units, b = 200 units and 105ν =  units.

Example 7b (Table 10)
We calculate ( )[ ]t

pVaR X at t = 1; 1.1; 1.5; 1.9, 
and p = 90%, 95% and 99%, if a = 100 units, 
b = 200 units and 105ν =  units.

Table 8
Values ( )[ ]t

pVaR X  at various values of t and p, assuming uniform distribution 
of variable X at interval (a, b)

p = 90% p = 95% p = 99%

(2)[ ]pVaR X 101 100.25 100.01

(2.1)[ ]pVaR X 100.9 100.226 100.009

(2.5)[ ]pVaR X 100.6 100.131 100.005

(2.9)[ ]pVaR X 100.2 100.036 100.001

Source: расчеты автора / the author’s calculations.
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Table 9
Values ( )[ ]t

pVaR X  at various values of t and p, assuming triangular distribution  
of variable X at interval (a, b)

p = 90% p = 95% p = 99%

[ ]pVaR X 107.5338 105 102.2361

(1.1)[ ]pVaR X 107.0726 104.7566 102.1225

(1.5)[ ]pVaR X 105.2503 103.6228 101.5890

(1.9)[ ]pVaR X 103.0822 101.9039 100.7382

Source: the author’s calculations.

Table 10
Values ( )[ ]t

pVaR X  at various values of t and p, assuming triangular distribution  
of variable X at interval (a, b)

p = 90% p = 95% p = 99%

[ ]pVaR X 122.3607 115.8114 107.0711

(1.1)[ ]pVaR X 121.3007 115.0416 106.7119

(1.5)[ ]pVaR X 116.5831 111.4564 105.0249

(1.9)[ ]pVaR X 109.7468 106.0208 102.3345

Source: the author’s calculations.

Table 11
Values ( )[ ]t

pVaR X  at various values of t and p, assuming triangular distribution  
of variable X at interval (a, b)

p = 90% p = 95% p = 99%

[ ]pVaR X 130.8221 121.7945 109.7468

(1.1)[ ]pVaR X 129.4024 120.7334 109.2518

(1.5)[ ]pVaR X 122.8583 115.7916 106.9264

(1.9)[ ]pVaR X 113.4350 108.2991 103.2179

Source: the author’s calculations.

V. B. Minasyan



104 FINANCE: THEORY AND PRACTICE   Vol. 24,  No. 3’2020

Table 12
Values ( )[ ]t

pVaR X  at various values of t and p, assuming triangular distribution  
of a variable X at interval (a, b)

p = 90% p = 95% p = 99%

(2)[ ]pVaR X 103.0206 101.1180 100.2236

(2.1)[ ]pVaR X 102.9766 101.0636 100.2125

(2.5)[ ]pVaR X 102.8005 100.8101 100.1589

(2.9)[ ]pVaR X 100.9747 100.4257 100.0738

Source: the author’s calculations.

Table 13
Values ( )[ ]t

pVaR X  at various values of t and p, assuming triangular distribution  
of variable X at interval (a, b)

p = 90% p = 95% p = 99%

(2)[ ]pVaR X 107.0711 103.5355 100.7071

(2.1)[ ]pVaR X 106.7454 103.3634 100.6712

(2.5)[ ]pVaR X 105.2440 102.5617 100.5025

(2.9)[ ]pVaR X 103.0822 101.3463 100.2335

Source: the author’s calculations.

Table 14
Values ( )[ ]t

pVaR X  at various values of t and p, assuming triangular distribution  
of variable X at interval (a, b)

p = 90% p = 95% p = 99%

(2)[ ]pVaR X 109.7468 104.8734 100.9747

(2.1)[ ]pVaR X 109.2978 104.6361 100.9252

(2.5)[ ]pVaR X 107.2284 103.5311 100.6926

(2.9)[ ]pVaR X 104.2485 101.8557 100.3118

Source: the author’s calculations.

FINANCIAL RISKS



105financetp.fa.ru

Example 7c (Table 11)
We calculate ( )[ ]t

pVaR X at t = 1; 1.1; 1.5; 1.9, 
and p = 90%, 95% and 99%, if a = 100 units, 
b = 200 units and 195ν =  units.

Examples 7a, 7b, and 7c show that at grow-
ing α , risk measures (1 )[ ]pVaR X+α  tend to the 
left border of the profit distribution carrier, 
and the greater confidence probability p is, the 
faster this happens. However, this happens 
more slowly than when moving from [ ]pVaR X  
to (2)[ ]pVaR X . Moreover, the closer distribu-
tion mode ν is to the left border of the profit 
distribution carrier, the faster risk measures 

(1 )[ ]pVaR X+α at growing α  tend to the left bor-
der of the profit distribution carrier at all p. That 
is, this position is all the more risky. Applying 
VaR risk measures to powers (1 )+α  at various 
α , the risk manager, depending on the risk ap-
petite of his company, can rather subtly examine 
the risks in the left tail of the profit distribution.

Example 8a (Table 12)
We calculate ( )[ ]t

pVaR X at t = 2; 2.1; 2.5; 2.9, 
and p = 90%, 95% and 99%, if a = 100 units, 
b = 200 units and 105ν =  units.

Example 8b (Table 13)
We calculate ( )[ ]t

pVaR X at t = 2; 2.1; 2.5; 2.9, 
and p = 90%, 95% and 99%, if a = 100 units, 
b = 200 units and 150ν =  units.

Example 8с (Table 14)
We calculate ( )[ ]t

pVaR X at t = 2; 2.1; 2.5; 2.9, 
and p = 90%, 95% and 99%, if a = 100 units, 
b = 200 units and 195ν =  units.

Examples 8a, 8b, and 8c show that at grow-
ing α , risk measures (2 )[ ]pVaR X+α  tend to the 
left border of the profit distribution carrier, and 
the greater confidence probability p is, the fast-
er this happens. However, this happens more 
slowly than when moving from (2)[ ]pVaR X  to 

(3)[ ]pVaR X . The closer distribution mode ν is to 
the left border of the profit distribution carrier, 
the faster risk measures (2 )[ ]pVaR X+α at growing 
α  tend to the left border of the profit distribu-
tion carrier at all p. That is, this position is all 
the more risky. Applying VaR risk measures to 
powers (2 )+α  at various α , the risk manager, 
depending on the risk appetite of his company, 
can rather subtly examine the risks in the left 
tail of the profit distribution.

Normal distribution  
(VaR to a fractional power)

Applying formulas (9) and (10) in the case of a 
normal distribution, we have:

(1 ) 0.1
1 (1 )(1 )[ ]p p pVaR X V k+α
− − −α= σ

and

2

(2 ) 0.1

1 (1 ) (1 )
[ ] .p p p

VaR X V k+α
− − −α

= σ

We study the behavior of these risk measures, 
depending on the confidence probability in Ta-
bles 15 and 16. Since only quantiles depend on 
the confidence probability, the examples provide 
precisely the dependence of the corresponding 
quantiles on confidence probabilities.

Table 15
Values ( )[ ]t

pVaR X  (through values  
of corresponding 0.1

qk ) at various values of t and p, assuming normal distribution of variable X

p = 90% p = 95% p = 99%

0.1
pk

 
( )pVaR 1.281552 1.644854 2.326348

0.1
1 (1 )(1 0.1 )p pk − − −  

(1.1)( )pVaR 1.334622 1.692766 2.365207

0.1
1 (1 )(1 0.5 )p pk − − −  

(1.5)( )pVaR 1.598193 1.939011 2.572387

0.1
1 (1 )(1 0.9 )p pk − − −  

(1.9)( )pVaR 2.074855 2.4446632 3.064547

Source: the author’s calculations.
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Tables 15 and 16 show that for each confidence 
probability p, the corresponding quantiles increase 
with the growth of α , risk measures (1 )[ ]pVaR X+α  
and  (2 )[ ]pVaR X+α  increase. Thus, at large α , these 
risk measures rather subtly assess the increasingly 
catastrophic risks of various levels of catastrophe, 
and the greater confidence probabilities p are, the 
greater the assessment of such risk measures is.

Clarifying risk assessments using 
risk measure “VaR to the power 
of …” adding increasingly small 

fractions to the power
Suppose that the risk manager assessed the as-
set risk using ( )pVaR X . However, in some time, 
s/he had to check the left tail of the profit dis-
tribution on the asset a little further to protect 
her/himself from slightly less frequently ob-
served threats. Thus, s/he calculated risk meas-

ure 
1

(1 )
2 ( ).pVaR X

+
 Further circumstances may 

make her/him check the left tail of the profit 
distribution on the asset even farther to protect 
her/himself from even less frequently observed 
threats — and s/he calculated risk measure 

1 1
(1 )

2 3 ( ).pVaR X
+ +

 This may lead to the situation 
when calculation and application risk measures 

such as 
1 1 1

(1 ... )
2 3 ( ).n

pVaR X
+ + + +

 May be of practical 
interest in risk management. Applying formula 
(7), we have the following formula to calculate 
these risk measures in the form of common risk 
measures VaR with a specially selected confi-
dence probability:

	      
1 1 1

(1 ... )
2 3 ( ) ,

n

n
p pVaR X VaR
+ + + +

=


 � (13)

where

   
1 1 1

1 (1 )(1 )(1 )...(1 ).
2 3np p p p p

n
= − − − − −  �(14)

We are interested in questions that have both 
theoretical and practical meaning: how deeply 
can one investigate with the help of such meas-
ures all kinds of risks (catastrophic) that can be 
observed in the left tail of the profit distribution 
on the asset? Is it possible to cover 100% of all 
the risks possible for this asset with the help of 
this sequence of risk measures?

To do this, we first try to investigate the as-
ymptotic behavior of confidence probabilities 

np at unlimited increase of n.
Note that these probabilities can be as fol-

lows

1 nx
np e= − , where

Table 16
Values ( )[ ]t

pVaR X  (through values of corresponding 0.1
qk ) at various values of t and p, assuming normal 

distribution of variable X

p = 90% p = 95% p = 99%

2

0.1

1 (1 )p
k

− −  
(2)( )pVaR 2.326348 2.807034 3.719016

2

0.1

1 (1 ) (1 0.1 )p p
k

− − −  
(2.1)( )pVaR 2.361524 2.839036 3.74527

2

0.1

1 (1 ) (1 0.5 )p p
k

− − −  
(2.5)( )pVaR 2.542699 3.008547 3.888177

2

0.1

1 (1 ) (1 0.9 )p p
k

− − −  
(2.9)( )pVaR 2.894304 3.379946 4.24561

Source: the author’s calculations.
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1 1 1
ln[(1 )(1 )(1 )...(1 )]

2 3
1 1 1

ln(1 ) ln(1 ) ln(1 ) ... ln(1 ).
2 3

nx p p p p
n

p p p p
n

= − − − − =

= − + − + − + + −

Remember that function ln(1 + x) is expanded 
in a Taylor series as follows:

2 3 41 1 1
ln(1 ) ...

2 3 4
x x x x x+ = − + − + ,

converging for all  ( 1,1]x∈ − , and we apply this 
expansion to each member of the expression 
for xn

2 3 41 1 1
ln(1 ) ...

2 3 4
p p p p p− = − − − − −

2 3 4
2 3 4

1 1 1 1 1 1 1 1
ln(1 ) ...

2 2 2 2 3 2 4 2
p p p p p− = − − − − −

2 3 4
2 3 4

1 1 1 1 1 1 1 1
ln(1 ) ...

3 3 2 3 3 3 4 3
p p p p p− = − − − − −

etc.

2 3 4
2 3 4

1 1 1 1 1 1 1 1
ln(1 ) ...

2 3 4
p p p p p

n n n n n
− = − − − − −

Substituting all these expansions into the ex-
pression for xn and making a reduction of such 
terms in powers of p, we have:

2

2 2

3

3 3

1 1 1 1
(1 ... ) (1 ... )

2 2 2

1 1
(1 ... ) ...

3 2

n

p
x p

n n

p

n

= − + + + − + + + −

− + + + −

1 1 1
(1 ... ) ...

2 3

s

s s s

p

s n
− + + + + +

Marking through

1

1
( )

n

n s
k

s
k=

ς =∑ , при s = 1, 2, …, the expression 

for xn can be as follows:

2 3

1

(1) (2) (3) ...
2 3

( ) ... ( ).

n n n n

s s

n n
s

p p
x p

p p
s s

s s

∞

=

= − ς − ς − ς − −

− ς − = − ς∑
Note that values ( )sς  are partial sums of a 

series that determines the value of the famous 
Riemann zeta function:

1

1
( )

s
k

s
k

∞

=

ς =∑ , which in our case is considered 

only for the natural values of argument s. As we 
know (for example, [22]), this function takes a 
finite value at s = 2, 3, …, however, its value is 
infinite (the series diverges) at s = 1.

This means that all values ( )n sς  at s = 2, 3, … 
tend to a finite limit at n →∞ , but ( )n sς  tends 
to +∞  at n →∞ .

Wherein

2

(1) ( )
s

n n n
s

p
x p s

s

∞

=

= − ς − ς∑

since ( ) ( ),n s sς < ς  а  ( ) (2),sς ≤ ς  and 2s ≥  we 
have

2 2 1

2 2

1

( ) ( ) (2)( )

(2)( ) (2)( ) .
1 6 1

s s s

n
s s s

s

s

p p p
s s p

s s s

p p
p p p

p p

∞ ∞ ∞

= = =

∞

=

ς < ς ≤ ς − <

π
< ς − = ς − = < ∞

− −

∑ ∑ ∑

∑
Here, we used the formula for the sum of an 

infinite decreasing geometric progression, as well 
as the well-known Euler’s identity, which states 

that 
2

(2)
6

π
ς =  (for example, [22]).

Thus, nx →−∞  at n →∞, and therefore, with 
1 nx

np e= − , пwe have 1np →  at n →∞ .
This means that a gradual increase in confi-

dence probability with decreasing probabilities 

p,  1
,

2
p …, 1

,...p
n

 when calculating risk measures 

1 1 1
(1 ... )

2 3 ( )n
pVaR X
+ + + +

, leads to full coverage of the 

left tail of the asset profit distribution, and the 
value of these measures tends to the left end of 
probability distribution carrier X.
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CONCLUSIONS
The paper introduces a new family of risk meas-
ures, called VaR to the power of t, ( )tVaR . Ex-
pressions obtained for this family are easily ap-
plicable in practice, as well as closed analytical 
expressions for many statistical distributions 
that are often used in financial and insurance 
applications.

( )tVaR  family of measures can help regula-
tors and practical risk managers. Risk measures 

( )tVaR  should improve regulatory methods in 
calculating capital requirements, as they may 
include more information about the relationship 
of agents with risk positions. Including quality 
information in decision-making tools is impor-
tant for risk managers, and risk measures ( )tVaR
may play a key role in achieving this goal.

By calibrating parameters, one can compare 
risk measures ( )tVaR  with a wide variety of con-
texts. In particular, with a fixed level of confi-
dence, the new family contains risk measures 

that are between VaR and ES measures and can 
adequately reflect average catastrophic risks of 
loss. However, in certain situations, more con-
servative risk measures than ES may be preferred. 
We show that such extremely conservative risk 
measures can also be determined by means of 

( )tVaR  family. The conservatism of risk measures 
( )[ ]t
pVaR X introduced in the work increases with 

the growth of t, and at large values ​​of t > 1 they 
are more conservative compared to the known 
measures VaR and ES. These measures can be 
applied by cautious investors, who are afraid of 
possible very bad investment results. Although 
these results are very unlikely, in their opinion, 
they are quite possible in these circumstanc-
es. Research and assessment of such risks can 
be carried out using sequential calculation of 

( )[ ]t
pVaR X  with increasing values ​​of t. The way 

to calculate risk measures ( )[ ]t
pVaR X  will depend 

on many investor preferences, including their 
risk appetite.
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