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aBStract
Distortion risk measures have been popular in financial and insurance applications in recent years due to their attractive 
properties. The aim of the article is to investigate whether risk measures “VaR in the power of t”, introduced by the author, 
belong to the class of distortion risk measures, as well as to describe the corresponding distortion functions. The author 
introduces a new class of risk measures “ES to the power of t” and investigates whether it belongs to distortion risk 
measures, and also describes the corresponding distortion functions. The author used the composite method to design 
new distortion functions and corresponding distortion risk measures, to prove that risk measures “VaR to the power of t” 
and “ES to the power of t” belong to the class of distortion risk measures. The paper presents examples to illustrate the 
relevant concepts and results that show the importance of risk measures “VaR to the power of t” and “ES to the power of 
t” as subsets of distortion risk measures that allow identifying various financial catastrophic risks. The author concludes 
that risk measures “VaR to the power of t” and “ES to the power of t” can be used in risk management of companies when 
assessing remote, highly catastrophic risks.
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INTRODUCTION
The risk measure is a mapping ρ  of a set of 
random variables X associated with risk port-
folios of assets and/or liabilities (the result 
variables of these portfolios) into a real line 
R. In the following discussion, X will be rep-
resented as the value of the corresponding 
losses, i. e. positive values of the X variables 
will represent losses, while negative values 
will represent gains. Distortion risk meas-
ures represent a special and important group 
of risk measures widely used in finance and 
insurance as a calculation of capital require-
ments and the principles of calculating indi-
cators related to risk appetite for the regula-
tor and company executive. Several popular 
risk measures have proven to belong to dis-
tortion risk measures. For example, value at 
risk (VaR), tail value at risk, expected short-
fall (ES) [1–3] or Wang’s distortion measure 
[4]. Distortion risk measures satisfy the most 
important properties that a “good” risk meas-
ure should have, including positive homoge-
neity, translation invariance, and monotonic-
ity [5].

In our previous works, we introduced a family 
of risk measures called “VaR to the power of t” 
( ( )[ ]t

pVaR X ) for any confidence probability p and 
any real 1t ≥  [6–8]. In these works, computa-
tional formulas for risk measures ( )[ ]t

pVaR X  were 
obtained. Also, the relationships between these 
measures and the measures such as [ ]pES X  
for some specific loss distribution laws were 
investigated. We revealed that the relative per-
sistence level for each measure can depend both 
on the loss distribution law and on the confi-
dence probability with which these measures are 
calculated. However, for almost all loss distri-
bution laws and for all confidence probabilities 
of practical interest, risk measure ( )[ ]t

pVaR X  for 
any real 2t ≥  turns out to be more persistent, 
providing a more “careful” risk assessment than, 
say, risk measure [ ]pES X .

D. Denneberg, S. Wang and J. Dhaene [9, 10] 
proved that when the corresponding distor-
tion function is concave, the distortion risk 
measure is also sub-additive. VaR is one of 

the most popular risk measures used in risk 
management and banking supervision because 
of its computational simplicity and for some 
regulatory reasons, regardless of its shortcom-
ings as a risk measure. For example, VaR is not 
a sub-additive risk measure [11, 12]. Being 
coherent [2, 3], ES risk measure is only inter-
ested in losses in excess of VaR and ignores 
useful information about the distribution of 
losses below Va R.

L. Zhu and H. Li [13] presented and studied 
the tail distortion risk measure reformulated 
by F. Yang [14] as follows. For the distortion 
function g, the tail distortion risk measure at 
the confidence level p for the loss variable X is 
defined as the distortion risk measure with the 
distortion function:

( ),  0 1�
( ) 1

1,  1� 1.
p

x
g if x p

g x p

if p x

 ≤ ≤= −
 < ≤

C. Yin and D. Zhu [15] described three meth-
ods for building distortion risk measures: the 
composite method, the mixing method, and the 
copula-based approach. We will use the results 
of this work.

Many researchers have proposed new classes 
of distortion measures.

For example, J. Belles-Sampera, M. Guillén, 
M. Santolino [16] proposed a new class of distor-
tion risk measures called GlueVaR risk measures 
to extend VaR and ES. They can be expressed as 
a combination of VaR and ES indicators at dif-
ferent levels of confidence probabilities. They 
obtained closed-form analytical expressions for 
the most commonly used distribution functions 
in finance and insurance. The subfamily of these 
risk measures satisfies the tail sub-additivity 
property, which means that diversification ben-
efits can persist, at least in certain cases. The 
application of GlueVaR risk measures related 
to capital allocation was discussed by J. Belles-
Sampera, M. Guillén, M. Santolino [17].

U. Cherubini and S. Mulinacci [18] proposed 
a class of distortion measures based on con-
tamination from an external “scenario” variable. 
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For a scenario-dependent variable whose risk is 
modeled by a copula function with horizontally 
concave portions, they give conditions for the 
coherence axiom and offer examples of this 
class measures based on the copula function.

It would be interesting to investigate the 
relationship between two classes of risk meas-
ures: distortion risk measures and VaR to the 
power of t.

We introduce a family of new risk measures 
“ES to the power of t” ( ( )[ ]t

pES X ) at any confi-
dence probability p and any real 1t ≥ . We inves-
tigated the relationship of two classes of risk 
measures: distortion and ES to the power of t. It 
is proved that risk measures “ES to the power of 
t” is a subset of distortion risk measures. Thus, 
for any 1t ≥ , any risk measure “ES to the power 
of t” is a distortion risk measure with a certain 
distortion function. In this case, this distortion 
function will be presented.

It is hard to believe in a unique risk measure 
that can encompass all of its characteristics. It 
does not exist. Moreover, since a single number 
is associated with each risk measure, it cannot 
exhaust all information about the risk. Accor-
ding to [8], risk measures “VaR to the power 
of t” allow by changing the value of t, to study 
the right tail of the loss distribution with any 
accuracy required for the given case, i. e. inves-
tigate the tail of the distribution as carefully as 
it is necessary in the given circumstances. It is 
prudent to look for risk measures ideal for a 
particular problem. Since all the proposed risk 
measures are flawed and limited in application, 
selecting the appropriate risk measure is still 
relevant in risk management.

DISTORTION RISK MEASURES
Distortion functions

A distortion function g: [0, 1] → [0, 1] is a non-
decreasing function such that g g(0) = 0, g(1) = 1. 
Many distortion functions g have already been 
proposed in the literature. Some commonly 
used distortion functions are listed here.

The work by M. Denuit, J. Dhaene, M. Goo-
vaerts and R. Kaas [12] presents the summary 
of other distortion functions.

•  Function { 1 }( ) 1 x pg x > −= , where 1A  is the in-
dicator function and equals 1 at event A, and 
equals 0 otherwise, is a concave distortion 
function. Here, in applications, p will repre-
sent the preselected confidence level with 
which the corresponding risk measure is in-
tended to be calculated.

•  Incomplete beta-function 

1 1

0

1
( ) (1 )

( , )

x
a bg x t t dt

a b
− −= −

β ∫ , 

where a > 0 and b > 0 are the parameters and 
1

1 1

0

( , ) (1 ) .a ba b t t dt− −β = −∫

In particular, if b = 1, we obtain the power 
distortion function g (x) = ax , and if a = 1, we 
obtain the dual-power distortion function 

( ) 1 (1 ) .bg x x= − −
•  Power distortion ( )g x xα=  is a concave 

distortion function if 0 1< α <  and a convex 
distortion function if 1.α >

•  Exponential distortion 1
( )

1

xe
g x

e

−
=

−
 is a 

convex distortion function.
•  Sinusoidal distortion ( ) sin

2
g x x

π
=  is a 

concave distortion function.
•  Function 1�( ) xg x xe=  is a concave distor-

tion function.

•  Logarithmic distortion ln( 1)
( )

ln 2

x
g x

+
=  is a 

concave distortion function.
•  Distortion Wang g (x) = 1 1( ( ) ( )),x p− −Φ Φ +Φ  

0 < p < 1, where Φ  is the standard normal 
distribution function. Obviously, this is an 
increasing function [since these are functions 

( )xΦ  and 1( )x−Φ ] and 
1 1(0) ( (0) ( )) ( ) 0g p− −= Φ Φ +Φ =Φ −∞ =  and 

1 1(1) ( (1) ( )) ( ) 1g p− −= Φ Φ +Φ =Φ +∞ = , and 

1 1 11 1
( ) ( ( ) ( )) ( ( ))

2 2
g p p p− − −= Φ Φ +Φ =Φ Φ =

•  Lookback distortion
( ) (1 ln ), (0,1].pg x x p x p= − ∈

Obviously, this is an increasing function, 
which is easy to check: 2 1( ) ln 0 pg x p x x−′ = − >  
if [0,1]x∈ , and 

0
(0) lim ( ) 0

x
g g x

→+
= =  and (1) 1.g =
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•  Identity function ( )g x x= is the smallest 
concave distortion function and also the larg-
est convex distortion function.

•  0 { 0}( ) 1 xg x >= is concave on [0,1] and is the 
largest of all non-identical concave distortion 
functions. 0

{ 1}( ) 1 xg x ==  is convex on [0,1] and 
is the smallest of all non-identical convex dis-
tortion functions.

•  For 0 < p  <1, ( ) min{ ,1}
1

x
g x

p
=

−
 is the 

smallest concave distortion function of all 
{ 1 }( ) 1 x pg x > −≥ .

Distortion risk measures
If (Ω , F, P) is a common probability space 

where all random variables that represent the 
risks are defined. If XF  is an integral distri-
bution function of random variable X, we de-
note the dual distribution function as XF , i. e. 

( ) 1 ( ) { }.X XF x F x P X x= − = >
Let g be the distortion function.
Distorted expectation of random variable X is 
[ ]g Xρ  a n d  i s  d e f i n e d  a s 

0

0

[ ] ( ( )) [ ( ( )) 1] ,g X XX g F x dx g F x dx
+∞

−∞

ρ = + −∫ ∫   (1)

provided that at least one of the two integrals 
above is finite. If X is a non-negative ran-
dom  variable, then gρ is  simplified to 

0

[ ] ( ( )) .g XX g F x dx
+∞

ρ = ∫

This definition implies that if the distortion 
function is an identical function, i. e. ( )g x x= , 
then the distorted expectation coincides with 
the usual expectation: [ ] [ ].g X E Xρ =

Due to the fact that the expected value of a 
random variable is considered the most impor-
tant way to assess the future value of random 
variable X, we assume that since risks arise due 
to some value deviation of a random variable 
from its expected value, then risk measures can 
be modeled as a “distortion” of the expected 
value using the appropriate distortion function.

Distorted expectation [ ]g Xρ  is called the 
distortion risk measure with distortion function 
g [19].

We can prove that, as was first observed by 
M. Denuit, J. Dhaene, M. Goovaerts and R. Kaas 
[12], the known risk measure VaR [1–3] is a dis-
torted risk measure corresponding to distortion 
function { 1 }( ) 1 ,   p (0,1)x pg x > −= ∈ , i. e. the following 
definition is true.

Definition 1 [19]
F o r  t h e  d i s t o r t i o n  f u n c t i o n

{ 1 }( ) 1 ,   p (0,1)x pg x > −= ∈ , if distribution function 
XF  is continuous, the corresponding risk meas-

ure is [ ] [ ]g pX VaR Xρ = .
J. Dhaene et al. [19] also proved two impor-

tant facts that describ the relationship of all 
distortion risk measures obtained by distortion 
functions that are continuous on the right on 
[0,1) or left on (0,1] with the risk measures Va R.

Theorem 1
When g is a continuous distortion function 

on the right on [0,1), the distorted expectation 
[ ]g Xρ  has the following representation:

1

[0,1]

[ ] [ ] ( ),g qX VaR X dg q+
−ρ = ∫

where pVaR [ ] sup{ | ( ) }XX x F x p+ = ≤

Theorem 2
When g is a continuous distortion function 

on the left on [0,1), the distorted expectation 
[ ]g Xρ  has the following representation:

1

[0,1] [0,1]

[ ] [ ] ( ) [ ] ( ),g q qX VaR X dg q VaR X dg q−ρ = =∫ ∫

W h e r e  pVaR [ ] inf{ | ( ) }XX x F x p= ≥  a n d 
( ) 1 (1 )g q g q= − −  —  are the dual distortion to g.

Obviously, g =  g, and g is continuous on the 
left if and only if g  is continuous on the right; 
g is concave if and only if g  is convex.

Distortion risk measures are a special class 
of risk measures introduced by D. Denneberg 
[9] and modified by S. S. Wang [4, 20].

Distortion risk measures satisfy many proper-
ties, including positive homogeneity, translation 
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invariance, and monotonicity. A risk measure is 
coherent if it satisfies the following set of four 
properties [11, 21]:

(M) monotonicity: ( ) ( )X Yρ ≤ ρ  if P (X ≤  Y) = 1;
(Р) positive homogeneity: for any positive 

constant c > 0 and loss X, ρ (cX) = cρ (X);
(S) sub-additivity: for any losses X, Y, then 

( ) ( ) ( )X Y X Yρ + ≤ ρ +ρ ;
(T) translation invariance: if c is constant, 

then ( ) ( )X c X cρ + = ρ − .
Risk measureρ  is called a convex risk meas-

ure if it satisfies the properties of monotonic-
ity, translation invariance and the following 
convexity property:

(С) convexity: ρ (λ X + (1 –  λ) Y) ≤ λ ρ (X) + 
+ (1 –  λ) ρ (Y), 0 ≤ λ ≤ 1.

Obviously, under the assumption of positive 
homogeneity, monotonicity, and translation 
invariance, the convexity of the risk measure 
is equivalent to sub-additivity.

Another distortion risk measure [19], besides 
VaR, is the well-known measure ES (expected 
shortfall), conditional VaR [1–3].

Definition 2 [19]
F o r  d i s t o r t i o n  f u n c t i o n 

( ) min{ ,1},  p [0,1]
1

x
g x

p
= ∈

−
 under the assump-

tion that the distribution function is continuous, 
the corresponding distorted risk measure is 

[ ] ES [ ]g pX Xρ = .
The following theorem [17] is useful and can 

be used to order distortion risk measures in 
terms of their distortion functions.

Theorem 3 [17]
If g (x) ≤  g * (x) for x ∈ [0,1], then [ ]g Xρ  ≤ 

≤  * [ ]
g

Xρ  for any random variable X.

DISTORTION RISK MEASURES VAR 
TO THE POWER OF T, t ≥ 1, (VaR(t)

p )
Today, risk measure VaR is probably the sec-

ond most commonly used risk measure, both in 
theory and practice, after volatility (standard 
deviation). Since the end of the twentieth cen-
tury, ES (Expected Shortfall) measure, condi-
tional VaR, the measure of expected tail losses 
exceeding VaR, has found sufficient applica-

tion in risk management. ES is perceived as a 
risk measure that specifies VaR measure, more 
conservative, considering tail losses, unlikely 
but large (“black swan”).

The concept of a new measure “VaR squared” 
(2)VaR  [6, 7] estimates risks more conservatively 

than VaR and is often more conservative than 
ES, assessing risk as a certain threshold value 
that is not overcome with a given probability 
(as VaR), and not as some average value from 
the set of “bad”, tail loss values, like ES.

Following the ideas in [6, 7], in [8] we intro-
duced the concept of risk measures VaR to any 
power 1t ≥ , and derived formulas that allow to 
calculate ( )tVaR as usual measure VaR with a 
certain modified confidence probability.

The concept of VaR to any natural power ( )nVaR
[6, 7] introduced a new risk measure to supple-
ment VaR, tracking rare tail events associated 
with great financial losses.

Risk measure VaR squared” (2)VaR  with a confi-
dence level p is the value that will not be exceeded 
by the loss if its threshold value pVaR  is exceeded 
with a confidence level p during a given time.

Work [8] presents the following formula: 

                2
(2)

1 (1 )
[ ] [ ].p p

VaR X VaR X
− −

=   (2)

Thus, to calculate new catastrophic risk 
measure “VaR squared”, a general formula has 
been obtained. We should just calculate risk 
measure VaR with confidence level 21 (1 ) .p− −

The concept of (2)VaR in [8] was general-
ized considering the fact that the confidence 
proba bility p′when determining (2)VaR , i. e. the 
threshold value that the profit will not exceed 
(the loss will exceed), provided that it is not 
exceeded (exceeded) by pVaR with probability
p′ , may differ from p. This risk measure, which 
can be called “bi-VaR”, was designated as (2)

,p pVaR ′  
and the following formula was obtained: 

 (2)
, 1 (1 )(1 )[ ] [ ]p p p pVaR X VaR X′ ′− − −= .  (3)

We will introduce the concept of risk meas-
ures VaR to the power of n, where n is any natural 
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number, and will give formulas to calculate risk 
measures VaR to the power of n, ( )nVaR  [8].

We represent usual risk measure VaR as:

1

(1)[ ] [ ] [ ],p p pVaR X VaR X VaR X= =  

where 1 1 (1 ).p p= − −
According to the formula,

2

(2)[ ] [ ]p pVaR X VaR X= , where 2
2 1p 1 (1 ) .p= − −

Naturally, according to the definition, we 
can assume that “VaR to the third power” is just 

2

(2)
, [ ].p pVaR X  Thus, we get that

2 3

(3) (2)
,[ ] [ ] [ ],p p p pVaR X VaR X VaR X= =  where ac-

cording to (3) 3 2p 1 (1 )(1 )p p= − − − .
Following this way, we introduce risk meas-

ure “VaR to the power of n” for any natural num-
ber n as 

1

(2)
, [ ]

np pVaR X
−

, where 1
n�1p 1 (1 )np −= − −  and 

we obtain that

1,

( ) (2)[ ] [ ] [ ],
n p n

n
p p pVaR X VaR X VaR X

−
= =  where ac-

cording to (3) n 1p 1 (1 )(1 )np p−= − − − .
The concept of risk measures “VaR to the 

power of n” was introduced [8] for any natural 
number n and the formula was obtained that 
reduces their calculations to the calculation of 
usual risk measure VaR with a confidence level 
changed in a certain way.

         ( )
1 (1 )

[ ] [ ]n
n

p p
VaR X VaR X

− −
= .  (4)

Thus, to calculate risk measure ( )n
pVaR , we 

should just to calculate risk measure VaR with 
confidence level 1 (1 ) .np− −

RISK MEASURES “POlY-Var”
We will introduce (like we did in [8]) a family of 
measures that generalize measures ( )[ ]n

pVaR X  
and allow the confidence probabilities used for 
various powers of VaR to be different.

We will represent usual risk measure VaR as:

1 1 1[ ] ,  where p 1 (1 ).p pVaR X VaR p p p= = = = − −




By formula (7), we introduce the concept of 
risk measure “poly-VaR to the second power”, 

“bi-VaR”:

1 2 2

(2)
, 2 1 2[ ] [ ],  where p 1 (1 )(1 ).p p pVaR X VaR X p p= = − − −





Accordingly, risk measure “poly-VaR to the 
third power” is as follows:

1 2 3 2 3 3

(3) (2)
, , ,[ ] [ ] [ ],  p p p p p pVaR X VaR X VaR X= =

 

3 2 3where p 1 (1 )(1 ).p p= − − − 

Thus, risk measure “poly-VaR to the power of 
n” is defined as follows:

1 2 1

( ) (2)
, ,..., ,[ ] [ ] [ ],  

n n n n

n
p p p p p pVaR X VaR X VaR X

−
= =

 

n 1where p 1 (1 )np −= − −  .

Work [8] provides the following formula to 
calculate the poly-VaR to the power of n”:

1 2 1 2

( )
, ,..., 1 (1 )(1 )...(1 )[ ] [ ],  

n n

n
p p p p p pVaR X VaR X− − − −=   (5)

that expresses it in terms of usual risk meas-
ure VaR with the confidence probability recal-
culated in a certain way.

RISK MEASURE VAR TO ANY REAl POWER 
t ≥ 1, VaR(t)

p  [x]
Any real number 1t ≥  can be unambiguously 
represented as:

,t k= +α  where k is a natural number, and α  
is a real number, and 0 1≤ α < . Obviously, k is 
the integer part of t, and α  is its fractional part.

Naturally, risk measure VaR to any real power 
1t ≥ , ( )[ ]t

pVaR X  is as follows [8]:

             ( ) ( 1)
, ,..., ,[ ] [ ]

k

t k
p p p p pVaR X VaR X+

α=


.  (6)

In particular, using formulas (5) and (6), we 
have:

    (1 ) (2)
, 1 (1 )(1 )[ ] [ ] [ ]p p p p pVaR X VaR X VaR X+α
α − − −α= =   (7)

and

2
(2 ) (3)

, , 1 (1 ) (1 )
[ ] [ ] [ ]p p p p p p

VaR X VaR X VaR X+α
α − − −α

= =  (8)

etc.,

( ) ( )
1 (1 ) (1 )

[ ] [ ] [ ]k
t k

p p p p
VaR X VaR X VaR X+α

− − −α
= = . (9)
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By means of risk measures ( )[ ]t
pVaR X , a risk 

manager can research the left tail of the profit 
distribution law for confidence probabilities that 
are multiples of the initial confidence proba-
bility p, as well as the fraction of this probability, 
to obtain very detailed information about less 
probable but more catastrophic risks.

NEW RISK MEASURES ES TO ANY POWER 
OF T, t ≥ 1, ES(t)

p  [x]
We have already discussed an important risk 
measure, [ ]pES X  (Expected Shortfall) risk meas-
ure (conditional VaR), the measure of expected 
tail losses exceeding VaR. It is used as a risk 
measure, specifying VaR measure, more con-
servative, considering tail losses, unlikely, but 
great. In the second section, we described risk 
measure ( )[ ]t

pVaR X , which at 2t ≥ often gives a 
more conservative risk assessment than [ ]pES X .

In this paper, we introduce a new family of 
risk measures “ES to the power of t” for any 1.t ≥

First, we will introduce the concept of new 
risk measure —  “ES squared”.

Risk measure“ES squared” denoted as
(2)[ ],pES X  is the value of the expected tail 

losses exceeding (2)[ ]pVaR X , i. e. by definition 
(2) (2)[ ] [ | [ ].p pES X E X X VaR X= >  (Symbol E[X|A] 

denotes the conditional mathematical expecta-
tion of the random variable X if event A takes 
place).

Note that since 2
(2)

1 (1 )
[ ] [ ]p p

VaR X VaR X
− −

= , the 
value of (2)[ ]pES X can be obtained by averaging 
the values of corresponding qVaR [ ]X  to vari-
able q on segment [1 –  2(1 ) ,1]p− .

If the loss distribution continues, we obtain 
the following useful representation for (2)[ ]:pES X

    
2

(2)
2

[1 (1 ) ,1]

1
[ ] [ ]

(1 )
p q

p

ES X VaR X dq
p

− −

=
− ∫ .  (10)

By analogy with ES squared, we introduce the 
concept of new risk measure ES to the power of 
n, where n is any natural number.

Risk measure “ES to the power of n”, which 
we will designate as ( )[ ]n

pES X , is the value of the 
expected tail losses exceeding ( )[ ]n

pVaR X , i. e. by 
definition ( ) ( )[ ] [ | [ ]n n

p pES X E X X VaR X= > .

Note that since ( )
1 (1 )

[ ] [ ]n
n

p p
VaR X VaR X

− −
= , the 

value of ( )[ ]n
pES X  can be obtained by averaging 

the values of corresponding qVaR [ ]X  to variable 
q on segment [1 –  (1 ) ,1]np− .

If the loss distribution continues, we obtain 
the following useful representation for ( )[ ]:n

pES X

  ( )

[1 (1 ) ,1]

1
[ ] [ ]

(1 ) n

n
p qn

p

ES X VaR X dq
p

− −

=
− ∫ .  (11)

Note that a useful formula is obtained from 
formula (11), which allows expressing ( )[ ]n

pES X  
by usual risk measure ES with the confidence 
probability changed in a certain way:

          ( )
1 (1 )

[ ] [ ]n
n

p p
ES X ES X

− −
= .  (12)

Now we will introduce new concept “ES to 
the power of t ”, where t is any real number, 1.t ≥  
We represent t as: t k= +α , where k is a natural 
number, and a is a real number 0 1.< α <

We will call risk measure “ES to the power of t”, 
denoted as ( )[ ]t

pES X , the value of the expected 
tail losses exceeding ( )[ ]t

pVaR X , i. e. by definition 
( ) ( )[ ] [ | [ ]t t
p pES X E X X VaR X= > .

Note that since ( )
1 (1 ) (1 )

[ ] [ ],k
t

p p p
VaR X VaR X

− − −α
=  

the value of ( )[ ]t
pES X  can be obtained by aver-

aging the values of corresponding qVaR [ ]X  to 
variable q on segment [1 –  (1 ) (1 ),1]kp p− −α .

If the loss distribution continues, we ob-
tain the following useful representation for 

( )[ ]:t
pES X

( )

[1 (1 ) (1 ),1]

1
[ ] [ ] .

(1 ) (1 ) k

t
p qk

p p

ES X VaR X dq
p p

− − −α

=
− −α ∫  (13)

Note that a useful formula is obtained from 
formula (13), which allows expressing ( )[ ]t

pES X  
by usual risk measure ES with the confidence 
probability changed in a certain way

( )
1 (1 ) (1 )

[ ] [ ]k
t

p p p
ES X ES X

− − −α
= . (14)

The following relations are valid between all 
the introduced risk measures:
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[ ] [ ],p pVaR X ES X≤ (2) (2)[ ] [ ],p pVaR X ES X≤ …,
( ) ( )[ ] [ ],...n n
p pVaR X ES X≤

(2) ( )[ ] [ ] ... [ ] ...n
p p pVaR X VaR X VaR X≤ ≤ ≤ ≤

(2) ( )[ ] [ ] ... [ ] ...n
p p pES X ES X ES X≤ ≤ ≤ ≤

However, the ratio between risk measures 
( )[ ]n
pES X  and ( 1)[ ]n

pVaR X+  may depend on the 
distribution law X and even on the confidence 
level p [7].

METHODS FOR CREATING 
NEW DISTORTION FUNCTIONS 

AND DISTORTION RISK MEASURES
Distortion functions can be viewed as a star-
ting point for a family of distortion risk meas-
ures. Thus, building and selecting distortion 
functions play an important role in develo-
ping families of risk measures with different 
properties. C. Yin and D. Zhu [15] consider 
three methods: the composite method, mi xing 
methods and copula-based method, which al-
low building new classes of distortion func-
tions and measures using the available ones.

In this work, we will discuss only the com-
posite method.

Composite method
The first approach to building distortion func-
tions is the composite method that uses a 
composition of distortion functions.

If 1 2, ,...h h  are distortion functions, we will 
define 1 1f ( ) ( )x h x=  and complex functions 

n 1f ( ) ( ( ))n nx f h x−= , n = 1, 2, … It is easy to check 
that nf ( )x , n = 1, 2, … are also distortion func-
tions. If 1 2, ,...h h  are concave distortion functions, 
then each nf ( )x  is concave, and they satisfy 
the conditions: 1 2 3 ...f f f≤ ≤ ≤ and the corre-
sponding risk measures satisfy (by Theorem 3) 

1 2 3
[ ] [ ] [ ] ...f f fX X Xρ ≤ ρ ≤ ρ ≤
We will consider two distortion functions 1g  

and 2g . If 2

,  0 1�
( ) 1

1,   1� 1,

x
if x p

g x p

if p x

 ≤ ≤= −
 < ≤

,

then

1 2( ) ( ( ))pg x g g x= =  1( ),  0 1�
1

1,   1� 1,

x
g if x p

p

if p x

 ≤ ≤ −
 < ≤

.

Corresponding risk measure [ ]
pg Xρ  is a tail 

distortion risk measure first presented by L. Zhu 
and H. Li [13] and reformulated by F. Yang [14]. 
In particular, in the space of continuous random 
variable losses X

0

[ ] (1 ( | [ ]))
pg p pX g P X x X VaR X dx

∞

ρ = − ≤ >∫ .

If 1( ) ,0 1rg x x r= < <  

and 2

,  0 1�
( ) 1

1,   1� 1,

x
if x p

g x p

if p x

 ≤ ≤= −
 < ≤

, 

then

12 1 2

( ) ,  0 1�
( ) ( ( )) 1

1,   1� 1,

rx
if x p

g x g g x p

if p x

 ≤ ≤= = −
 < ≤

and
1

21 2 1
1

,  0 (1� )
1( ) ( ( ))

1,   (1� ) 1,

r
r

r

x
if x p

pg x g g x

if p x


≤ ≤ −= = 


< ≤

Obviously, 1 21g g<  and 2 12g g< , so by Theorem 

3 
1 21
[ ] [ ]g gX Xρ < ρ  and 

2 21
[ ] [ ]g gX Xρ < ρ .

In reality, it is sometimes necessary to distort 
the initial distribution more than once.

We will consider a few more examples of dis-
tortion functions obtained by the composite 
method as a composition of known distortion 
functions and will study the corresponding risk 
distortion measures.

Case 1
We will study exponential distortion function 

1
( )

1

xe
g x

e

−
=

−
 is a convex distortion function and 

indicator concave distortion function { 1 }1 x p> − .
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It is easy to check that the composition 
of any distortion function g(x) (in particular, 
this one) with { 1 }1 x p> −  in the following order 
g ( { 1 }1 x p> − ) = { 1 }1 x p> − , i. e. it does not create a new 
distortion function. If we change the order of 
creating the superposition, i. e. consider distor-
tion function { 1 }1 ( ( )).x p g x> −

However, since { 1 } { ( ) 1 }( ) 1 ( ( )) 1 ( )x p g x ph x g x x> − > −= =  

and inequality 1
1

1

xe
p

e

−
> −

−
 is equivalent to in-

equality ln(1 ( �1)(1� ))x e p> + , then 

{ 1 } { ln(1 ( 1)(1 ))}

{ 1 [1 ln(1 ( 1)(1 ))]}

( ) 1 ( ( )) 1 ( )

1 ( ).

x p x e p

x e p

h x g x x

x

> − > + − −

> − − + − −

= = =

=

A c c o r d i n g  t o  D e f i n i t i o n  1 , 
1 ln(1 ( 1)(1 ))[ ] [ ]h e pX VaR X− + − −ρ =  is distortion risk 

measure corresponding to the given distortion 
function, i. e. known risk measure VaR with the 
confidence level changed in such a way. This risk 
measure grows very slowly with an increase in 
confidence.

For example, if the initial confidence level is 
p = 0.95, then 0.032[ ] [ ]h X VaR Xρ ≈ .

Case 2
We will look at logarithmic distortion func-

tion ln( 1)
( )

ln 2

x
g x

+
= , a concave distortion func-

tion, as well as at indicative concave distortion 
function { 1 }1 x p> − .

Let’s consider a distortion function built with 
this superposition: { 1 }1 ( ( )).x p g x> −

However, since { 1 } { ( ) 1 }( ) 1 ( ( )) 1 ( )x p g x ph x g x x> − > −= =  

and inequality ln( 1)
1

ln 2

x
p

+
> −  is equivalent to 

inequality 1�2 �1px > , then

 

1

1 1

{ 1 } { 2 1}

{ 1 [1 (2 1)]} { 1 [2 2 ]}

( ) 1 ( ( )) 1 ( )

1 ( ) 1 ( ).

p

p p

x p x

x x

h x g x x

x x

−

− −

> − > −

> − − − > − −

= = =

= =

According to Definition 1, 12 2
[ ] [ ]ph X VaR X−−

ρ =  
is distortion risk measure corresponding to the 
given distortion function, i. e. known risk meas-
ure VaR with the confidence level changed in 

such a way. This risk measure grows fast with 
increasing confidence probability.

For example, if the initial confidence level is 
p = 0.95, then 0.97[ ] [ ]h X VaR Xρ ≈ .

Case 3
We will look at sinusoidal distortion function 

( ) sin
2

g x x
π

= , a concave distortion function, as 

well as at indicative concave distortion function 
{ 1 }1 x p> − .

Let’s consider a distortion function built with 
this superposition: { 1 }1 ( ( )).x p g x> −

However, since { 1 } { ( ) 1 }( ) 1 ( ( )) 1 ( )x p g x ph x g x x> − > −= =  

and inequality sin 1
2

x p
π

> −  is equivalent to 

inequality 2
arcsin(1 )x p> −

π
, then

{ 1 } 2
{ arcsin(1 )}

2
{ 1 [1 arcsin(1 )]}

( ) 1 ( ( )) 1 ( )

1 ( ).

x p
x p

x p

h x g x x

x

> −
> −
π

> − − −
π

= = =

=

According to Definition 1, 

2
1 arcsin(1 )

[ ] [ ]h
p

X VaR X
− −
π

ρ =  is distortion risk meas-

ure corresponding to the given distortion func-
tion, i. e. known risk measure VaR with the con-
fidence level changed in such a way. This risk 
measure grows fast with increasing confidence 
probability.

For example, if the initial confidence level is 
p = 0.95, then 0.9682[ ] [ ]h X VaR Xρ ≈ .

Case 4
We will consider power distortion function 

( )g x xα= , which is a concave distortion function 
at 0 1< α < and a convex distortion function at 

1α > , as well as indicator concave distortion 
function { 1 }1 x p> − .

Let’s consider a distortion function built with 
this superposition: { 1 }1 ( ( )).x p g x> −

However, since { 1 } { ( ) 1 }( ) 1 ( ( )) 1 ( )x p g x ph x g x x> − > −= =  
and inequality 1x pα > −  is equivalent to ine-

quality 
1

(1� )x p α> , 
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then
 

1 1{ 1 }
{ (1 ) } { 1 (1 (1 ) )}

( ) 1 ( ( )) 1 ( ) 1 ( ).x p
x p x p

h x g x x x
α α

> −
> − > − − −

= = =

According to Definition 1, 1

1 (1 )

[ ] [ ]h
p

X VaR X
α− −

ρ =  

is distortion risk measure corresponding to the 
given distortion function, i. e. known risk meas-
ure VaR with the confidence level changed in 
such a way.

The growth of these risk measures with in-
creasing confidence probability strongly de-
pends on the choice of parameterα .

For example, if the initial confidence level is 
p = 0.95, then at 2α = , 0.025[ ] [ ]h X VaR Xρ ≈  this 
risk measure grows very slowly with increasing 
confidence probability; at 1α = , 0.95[ ] [ ]h X VaR Xρ ≈  

it is standard VaR measure; and at 1

2
α = , 

0.9975[ ] [ ]h X VaR Xρ ≈  this risk measure grows rap-
idly with increasing confidence probability.

Case 5
Let’s consider 1�( ) xg x xe=  function, a concave 

distortion function, as well as indicative concave 
distortion function { 1 }1 x p> − .

Let’s consider a distortion function built with 
this superposition: { 1 }1 ( ( )).x p g x> −

However, since { 1 } { ( ) 1 }( ) 1 ( ( )) 1 ( )x p g x ph x g x x> − > −= =  

and inequality 1 1xxe p− > −  is equivalent to in-

equality � 1�
� �x p
xe

e
< , from which it follows that 

1�
� (� )

p
x W

e
> , where W(x) is the well-known 

Lambert  W-funct ion [22] , therefore 

{ 1 } 1
{ ( )}

1
{ 1 [1 ( )]}

( ) 1 ( ( )) 1 ( )

1 ( ).

x p p
x W

e

p
x W

e

h x g x x

x

> − −
>− −

−
> − + −

= = =

=

According to Definition 1,
1

1 ( )
[ ] [ ]h p

W
e

X VaR X−
+ −

ρ = is distortion risk meas-

ure corresponding to the given distortion 
function, i. e. known risk measure VaR with the 

confidence level changed in such a way. This 
risk measure grows fast with increasing confi-
dence probability.

For example, if the initial confidence level is 

p = 0.95, then 1
0.0184

p

e

−
− ≈ −  and then, using 

the well-known expansion of the Lambert W-

function in a power series 
1

| |x
e

<  converging at 

1
2 3 4 5

1

( ) 3 8 125
( ) ...,

! 2 3 24

n
n

n

n
W x x x x x x x

n

∞ −

=

−
= = − + − + −∑  

w e  g e t  (�0.0184) �0.0187W ≈  a n d  t h u s , 
0.9813[ ] [ ]h X VaR Xρ ≈ .

Case 6
Let’s consider ( ) min{ ,1}

1

x
g x

p
=

−
 function, a 

concave distortion function, as well as indica-
tive concave distortion function { 1 }1 ( )x p x> − .

Let’s consider a distortion function built with 
this superposition: { 1 }1 ( ( )).x p g x> −

However,

2

2

{ 1 } { (1 ) }2

1,    (1� )
( ) 1 ( ( )) 1 ( ).

0,    0 (1� )
x p x p

if x p
h x g x x

if x p
> − > −

 >= = =
≤ ≤

If we introduce concave distortion function 
1

2
2( )g x x=  that belongs to the family of distor-

tion functions studied in Case 4, then 
2{ 1 } 2 { (1 ) }

1 ( ( )) 1 ( ).x p x p
g x x> − > −

=

Thus, distortion function h(x) can also be 
represented as the following superposition:

2 2

2

{ 1 } 2 2

{ (1 ) } { 1 (1 (1 ) }

1,    (1� )
( ) 1 ( ( ))

0,    0 (1� )

1 ( ) 1 ( ).

x p

x p x p

if x p
h x g x

if x p

x x

> −

> − > − − −

 >= = =
≤ ≤

= =

According to Definition 1, 21 (1 )
[ ] [ ]h p
X VaR X

− −
ρ =

is distortion risk measure corresponding to the 
given distortion function, i. e. known risk meas-
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ure VaR with the confidence level changed in 
such a way. This risk measure grows fast with 
increasing confidence probability.

However, if we recall formula (2) for VaR 
squared, we get:

(2)[ ] [ ]h pX VaR Xρ = .

Thus, we found out that new risk measure 
VaR squared also belongs to the class of distor-
tion risk measures, and it corresponds to the 
distortion function obtained as a superposition 
of function { 1 }1 ( )x p x> − with any distortion func-

tion: ( ) min{ ,1}
1

x
g x

p
=

−
 or 

1

2
2( )g x x= .

We can prove that the following, more general 
definition is true.

Definition 3
Risk measure VaR to the power of n (for any 

natural n) belongs to the class of distortion 
risk measures and corresponds to the distor-
tion function obtained in any superposition of 
a function with any distortion function: 

( ) min{ ,1}
1

x
g x

p
=

−
or 

1

( ) n
ng x x= :

{ 1 } { 1 }

1 times

( ) 1 (g(g(...(g(x)) 1 ( ( ))x p x p n

n

h x g x> − > −

− −

= =


,

i.e. ( )[ ] [ ]n
p hVaR X X= ρ .

Proof

We will consider function ( ) min{ ,1},
1

x
g x

p
=

−
 

a concave distortion function. The following 
superposition 

1

( (...( ( ))
n times

g g g x
− −



also represents a con-

cave distortion function as follows:

�1

�1
11

1,    (1� )
( (...( ( ))

,    0 (1� )
(1 )

n

n
nn times

if x p
g g g x x

if x p
p −− −

 >
=  ≤ ≤ −



,

concave distortion function 
{ 1 }

1

( ) 1 ( ( (...( ( ))x p

n times

h x g g g x> −

− −

=


 is as follows: 

{ 1 }

1

( ) 1 ( ( (...( ( ))x p

n times

h x g g g x> −

− −

=


=

{ (1 ) }

1,    (1� )
1 ( )

0,    0 (1� )
n

n

x pn

if x p
x

if x p > −

 > =
≤ ≤

.

If we introduce concave distortion function 
1

( ) n
ng x x=  that belongs to the family of distor-

tion functions studied in Case 4, then 
{ 1 } { (1 ) }

1 ( ( )) 1 ( ) ( )nx p n x p
g x x h x> − > −

= = .

Thus, distortion function h(x) can also be 
represented as the following superposition:

{ 1 } { (1 ) } { 1 (1 (1 ) }
( ) 1 ( ( )) 1 ( ) 1 ( ).n nx p n x p x p

h x g x x x> − > − > − − −
= = =

According to Definition 1, 
1 (1 )

[ ] [ ]nh p
X VaR X

− −
ρ =

is distortion risk measure corresponding to the 
given distortion function, i. e. known risk meas-
ure VaR with the confidence level changed in 
such a way. This risk measure grows fast with 
increasing confidence probability.

However, if we recall formula (4) for VaR to 
the power of n, we get ( )[ ] [ ]n

h pX VaR Xρ = .
The definition is proved.
The more general statement is also valid for 

VaR risk measures to any power of 1.t ≥
Definition 4
Risk measure VaR to the power of t, (t)

pVaR [ ]X  
(at any actual t 1≥ ), where t is as follows: 

,t k= +α  where k is a natural number, and α  is 
a real number, moreover 0 1≤ α < , it is a dis-
torted risk measure and it is obtained as a risk 
measure corresponding to the distortion func-
tion, which can be represented as superposition 
of distortion functions { 1 }1 ( )x p x> − ,

( ) min{ ,1}
1

x
g x

p
=

−
,  a n d  ( ) min{ ,1}

1

x
g x

pα =
−α

, 

and 
1

1
1( ) k

kg x x −
− = in the following two ways:

{ 1 } { 1 } 1

1

( ) 1 ( ( (...( ( ( )) 1 ( ( ( ))),x p x p k

k times

h x g g g g x g g x> − α > − − α

− −

= =


i.e. ( )[ ] [ ]t
p hVaR X X= ρ .
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Proof

F u n c t i o n s  ( ) min{ ,1}
1

x
g x

p
=

−
 a n d 

( ) min{ ,1}
1

x
g x

pα =
−α

 are concave distortion 

functions. Next superposition 
1

( (...( ( ( ))...)
k times

g g g g xα

− −


also represents a concave distortion function as 
follows:

�1

1

1
�1

1,    (1� ) (1 )

( (...( ( ( ))...) ,  
(1 ) (1 )

 0 (1� ) (1 ),

k

k

k times
k

if x p p

x
g g g g x

p p

if x p p

α −
− −

 > −α

= 

− −α
 ≤ ≤ −α



and concave distortion function 
{ 1 }

1

( ) 1 ( ( (...( ( ( )...)x p

k times

h x g g g g x> − α

− −

=


 is as follows:

( )h x =

{ (1 ) (1 )}

1,    (1� ) (1 )
1 ( )

0,    0 (1� ) (1 )
k

k

x p pk

if x p p
x

if x p p > − −α

 > −α= =
≤ ≤ −α .

With function 
1

1
1( ) k

kg x x −
− = , the distortion 

function h(x) can also be represented as the 
following superposition:

{ 1 } 1

{ (1 ) (1 )} { 1 (1 (1 ) (1 ))}

( ) 1 ( ( ( )))

1 ( ) 1 ( ).k k

x p k

x p p x p p

h x g g x

x x

> − − α

> − −α > − − − −α

= =

= =

According to Definition 1,
1 (1 ) (1 )

[ ] [ ]kh p p
X VaR X

− − −α
ρ = is distortion risk meas-
ure corresponding to the given distortion 
function, i. e. known risk measure VaR with the 
confidence level changed in such a way.

However, if we recall formula (9) for VaR to 
the power of t, we get ( )[ ] [ ]t

h pX VaR Xρ = .
The definition is proved.
In general, any concave distortion function g 

gives the distribution tail more weight than the 
identical function g(x) = x, while any convex dis-
tortion function g gives the tail less weight than 
the identical function g(x) = x [15]. Therefore, 
in particular, any concave distortion function 
g gives the distribution tail more weight than 
any convex distortion function.

It is good to know when building a risk meas-
ure with the required properties.

The question is if risk measure (2)[ ]pES X is a 
distorted risk measure.

Case 6

We will consider function ( ) min{ ,1},
1

x
g x

p
=

−
 

a concave distortion function, as well as distor-
tion function  built with superposition: ( ( )).g g x

It is easy to check,

2

2
2

1,    (1� )
( ) ( ( ))

,    0 (1� )
(1� )

if x p
h x g g x x

if x p
p

 >
= =  ≤ ≤


and
2

2
2

0,    (1� )
( ) 1

,    0 (1� ) .
(1� )

if x p
h x

if x p
p

 >
′ =  ≤ ≤


According to Theorem 2, the distorted risk 
measure corresponding to a given distortion 
function turns out to be a measure that can be 
represented as follows

2

1 2

[0,(1 ) ]

1
[ ] [ ]

(1 )
h q

p

X VaR X dq
p

−

−

ρ = +
−∫

2

1

[(1 ) ,1]

[ ] 0q

p

VaR X dq−

−

+ × =∫

2

12

[0,(1 ) ]

1
[ ]

(1 )
q

p

VaR X dq
p

−

−

= =
− ∫

2
2

[1 (1 ) ,1]

1
[ ]

(1 )
q

p

VaR X dq
p

− −

=
− ∫ .

However, if we recall formula (10) for ES 
squared, we get (2)[ ] [ ]h pX ES Xρ = .

We found out that new risk measure ES 
squared, introduced in this work, also belongs 
to the class of distortion risk measures, and it 
corresponds to the described distortion function.

The question is if risk measure ( )[ ]n
pES X is a 

distorted risk measure.
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Definition 5
Risk measure ES to the power of n (for any 

natural n) belongs to the class of distortion risk 
measures, and it corresponds to the distortion 
function obtained as any superposition of func-

tions ( ) min{ ,1}
1

x
g x

p
=

−
as follows:

( ) ( (...( ( )),
n times

h x g g g x
−

=


 i. e. ( )ES [ ] [ ]n
p hX X= ρ .

Proof

Function ( ) min{ ,1}
1

x
g x

p
=

−
 is a concave dis-

tortion function. Next superposition ( (...( ( ))
n times

g g g x
−



also represents a concave distortion function 
as follows:

,    0 (1� )
(1 )( ) ( (...( ( ))

1,    (1� ) 1

n
n

nn times

x
if x p

ph x g g g x

if p x−

 ≤ ≤ −= = 
 < ≤



аnd

0,   (1� )
( ) 1

,    0 (1� )
(1� )

n

n
n

if x p
h x

if x p
p

 >
′ =  ≤ ≤


.

According to Theorem 2, the distorted risk 
measure corresponding to a given distortion 
function h(x) turns out to be a measure that 
can be represented as follows

1

[0,(1 ) ]

1
[ ] [ ]

(1 )n

h q n

p

X VaR X dq
p

−

−

ρ = +
−∫

1

[(1 ) ,1]

[ ] 0
n

q

p

VaR X dq−

−

+ × =∫

1

[0,(1 ) ]

1
[ ]

(1 ) n

qn

p

VaR X dq
p

−

−

= =
− ∫

[1 (1 ) ,1]

1
[ ]

(1 ) n

qn

p

VaR X dq
p

− −

=
− ∫ .

However, if we recall formula (11) for ES to 
the power of n, we get ( )[ ] [ ]n

h pX ES Xρ = .
We found out that new risk measure ES to the 

power of n also belongs to the class of distortion 
risk measures. It corresponds to the described 
distortion function and is presented as usual 
risk measure ES with the confidence probability 
changed in a certain way.

The definition is proved.
The question is if risk measure ( )[ ]t

pES X is a 
distorted risk measure.

Definition 6
Risk measure ES in power of t for any real 
1t ≥ , represented as ,t k= +α  where k is a nat-

ural number, and a is a real number, 0 1< α < , 
belongs to the class of distortion risk measures, 
and corresponds to the distortion function ob-
tained as any superposition of functions 

( ) min{ ,1}
1

x
g x

p
=

−
and ( ) min{ ,1}

1

x
g x

pα =
−α

 as 

follows:

( ) ( (...( ( ( ))...)
k times

h x g g g g xα

−

=


, i. e. (t)ES [ ] [ ].p hX X= ρ

Proof

Function ( ) min{ ,1}
1

x
g x

p
=

−
 is a concave dis-

tortion function. Superposition ( (...( ( ))
n times

g g g x
−



also 

represents a concave distortion function as fol-
lows:

( ) ( (...( ( ( ))...)

,    0 (1� ) (1 )
(1 ) (1 )

1,    (1� ) (1 ) 1,

k times

k
k

k

h x g g g g x

x
if x p p

p p

if p p x

α

−

= =

 ≤ ≤ −α − −α= 
 −α < ≤



and

0,   (1� ) (1 )
( ) 1

,    0 (1� ) (1 )
(1� ) (1 )

k

k
k

if x p p
h x

if x p p
p p

 > −α
′ =  ≤ ≤ −α −α

.
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According to Theorem 2, the distorted risk 
measure corresponding to a given distortion 
function h(x) turns out to be a measure that 
can be represented as follows:

1

[0,(1 ) (1 )]

1
[ ] [ ]

(1 ) (1 )k

h q k

p p

X VaR X dq
p p

−

− −α

ρ = +
− −α∫

1

[(1 ) ,1]

[ ] 0
n

q

p

VaR X dq−

−

+ × =∫

1

[0,(1 ) (1 )]

1
[ ]

(1 ) (1 ) k

qk

p p

VaR X dq
p p

−

− −α

= =
− −α ∫

[1 (1 ) (1 ,1]

1
[ ]

(1 ) (1 ) k

qk

p p

VaR X dq
p p

− − −α

=
− −α ∫ .

If we recall formula (13) for ES to the power 
of t, we get: ( )[ ] [ ]t

h pX ES Xρ = .
We found out that new risk measure ES to the 

power of t also belongs to the class of distortion 
risk measures. It corresponds to the described 
distortion function and is presented as usual 
risk measure ES with the confidence probability 
changed in a certain way.

The definition is proved.
We will now consider case 7 of two random 

variables X and Y with different discrete dis-
tribution laws, whose risks do not distinguish 
between the known risk measures VaR and ES 
[15]. Generalizing risk measure ES with random 
values of losses that obey discrete distribution 
laws has its own specifics. In particular, if the 
random loss X obeys a discrete distribution, 
then [ ]pES X  is expressed through the values 
of VaR and the expected value of the excess 
losses over VaR [15]:

[ ] [ ]

1 ( [ ])
[ [ ] | [ ]].

1

p p

X p
p p

ES X VaR X

F VaR X
E X VaR X X VaR X

p

= +

−
+ − >

−
 (15)

This example by C. Yin and D. Zhu [15] shows 
that risk measures [ ]pVaR X  and [ ]pES X  may not 
distinguish between the risks created by X and 

Y. At the same time, an example of a certain 
risk measure that distinguishes between their 
risks is given. This measure coincides with risk 
measure (2)[ ]pES X  introduced in this work.

Case 7
Let us consider two random variables X and 

Y that simulate risks with distribution functions, 
respectively:

0,  0,

0.6,   0 100
( )

0.975,   100 500

1,   500

X

if x

if x
F x

if x

if x

<
 ≤ <=  ≤ <
 ≥

and

0,  0,

0.6,   0 100
( )

0.99,   100 1100

1,   1100

Y

if x

if x
F x

if x

if x

<
 ≤ <=  ≤ <
 ≥

It is easy to check that E(X) = E(Y) = 50, 
0.95 0.96[ ] [ ] 100,VaR X VaR X= =

0.95 0.96[ ] [ ] 100.VaR Y VaR Y= =

ES can be calculated by formula (15) and we get:
0.95 0.95[ ] [ ] 300,ES X ES Y= =

0.96 0.96[ ] [ ] 350ES X ES Y= = . When p = 0.95 and 
p = 0.96, then according to the risk measures 
VaR and ES, both X and Y have the same risk! 
However, the maximum loss for Y (1100) more 
than doubles the loss for X (500), and it is clear 
that risk Y is greater than risk X.

We now consider distortion measure hρ with 
distortion function искажения h(x) = g(g(x)) and

,  0 1�
( ) 1

1,   1� 1,

x
if x p

g x p

if p x

 ≤ ≤= −
 < ≤

The, according to case 6,

[ ]h Xρ =  
2

(2)
2

[1 (1 ) ,1]

1
[ ] [ ].

(1 )
q p

p

VaR X dq ES X
p

− −

=
− ∫

And numerically for p = 0.95
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[ ]h Xρ =  
2

(2)
0.952

[1 0.05 ,1]

1
[ ] [ ],

(0.05)
qVaR X dq ES X

−

=∫

i.e.
[ ]h Xρ =  

[0.9975,1]

1 500
[ ] (1 0.9975) 500

0.0025 0.0025qVaR X dq= = − =∫

and
[ ]h Yρ =  

[0.9975,1]

1 1100
[ ] (1 0.9975) 1100.

0.0025 0.0025qVaR X dq= = − =∫

Then at p = 0.95, (2)
0.05[ ] [ ] 500h X ES Xρ = =  and 

(2)[ ] [ ] 1100.h pY ES Yρ = =
In this case, risk measure (2)

h pESρ = , distin-
guishing between different risk levels for X and 
Y, turned out to be more suitable for risk man-
agement than usual risk measures VaR and ES.

CONClUSIONS
A vigorous theoretical study of a class of dis-
tortion risk measures took place in the last 
decade. They have recently become widespread 
in financial and insurance applications due to 

their attractive properties. In his earlier works, 
the author introduced and investigated risk 
measures “VaR to the power of t” that allow 
identifying various financial catastrophic risks. 
In this paper, the author described and devel-
oped a composite method for creating a new 
class of distortion functions and corresponding 
distortion risk measures. By this method, the 
author proves that risk measures “VaR to the 
power of t” belong to the class of distortion risk 
measures, and describes the corresponding dis-
tortion functions. Also, the author introduces a 
new class of risk measures “ES to the power of 
t”, proves that they also belong to the class of 
distortion risk measures and describes the cor-
responding distortion functions. Various cases 
illustrate the relevant concepts and results 
that demonstrate the importance of “VaR to 
the power of t” and “ES to the power of t” risk 
measures as subsets of distortion risk measures 
identifying various financial catastrophic risks. 
Distortion risk measures are currently well 
studied and have many useful and convenient 
properties. Thus, all the properties possessed 
by the distortion risk measures [12] are also 
possessed by the families of measures “VaR to 
the power of t” and “ES to the power of t”.
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