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AbsTRACT
This paper aims to restore some parameters of functionals using cubic splines to forecast rare events in finance and 
economics. The article considers the mathematical method for recovering an unknown function from many different 
functionals, such as the value of a function, the value of its first derivative, second derivative, as well as a definite 
integral over a certain interval. Moreover, all observations can occur with an error. Therefore, the author uses a method 
of recovering a function from different functionals observed with an error. The function is restored in the form of a cubic 
spline, which has a value-second derivative representation. The optimization problem consists in minimizing several sums 
of squares of the deviation at once, for ordinary values, for the first derivatives, for the second derivatives, for integrals, 
and for roughness penalty. For greater flexibility, weights have been introduced both for each group of observations 
and for each individual observation separately. The article shows in detail how the elements of each corresponding 
matrix are filled in. The appendix provides an implementation of the method as a FunctionalSmoothingSpline function 
in R language. Examples of using the method for the analysis and forecasting of rare (discrete) events in the economy 
are given. Formulas for calculating the cross-validation score ( )CV α  for the automatic procedure for determining the 
smoothing parameter α  from the data in our problem of recovering a function by many functionals are shown. The 
paper concludes that the presented method makes it possible to analyze and predict rare events, which will allow you to 
prepare for such future events, get some benefit from this, or reduce possible risks or losses.
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1. INTRODUCTION
Rare events in the economy have a special 
interest. The rarity of events from the 
point of view of information theory makes 
such events more significant [1]. At the 
same time, events can have significant 
costly consequences and the ability to 
predict them is an urgent task. In logistics, 
for example, there is a lot of interest in 
predicting rare/intermittent demand forecast 
when demand occurs at a large number of 
intervals at which there was no demand. Of 
course, absolutely random events cannot 
be predicted, but if there is some pattern in 
the occurrence of events, then prediction 
is possible. Croston’s [2] and Willemaine’s 
[3] most popular methods, as well as many 
of their modifications, can find statistical 
patterns. Recent reviews [4, 5] analyse 
existing publications on such methods of 
forecasting intermittent demand. But in all 
methods only statistical analysis takes place 
to some extent. From the available data 
(intermittent demand) either the parameters 
of distributions or the values of transition 
probabilities of simple models of the Markov 
process. Such approaches, if they can give 
the expected number of events per time 
interval, are not able to give a forecast of the 
moment of occurrence of a particular event 
(estimation of probability of an event in the 
next time period, which is some statistical 

“shamanism”).
The author, unlike other researchers, 

o f fers  an  approach  [6 ]  based  on  the 
consideration of internal processes leading 
to the occurrence of events. So, the same 
rare demand should be analyzed from the 
point of view of the process of consumption, 
occurring on the side of a client outside 
our control. It turns out that it will not be 
difficult to restore the speed (intensity) of 
consumption of products at a particular 
customer. Of course, preliminary data about 
events (purchases) should be divided into 
different samples depending on the sources 
(customers) where they are generated, 
which may not always be possible due 
to imperfections in the data collection 

methodology. Viewing the data in the 
sample as a sequence of integrals from the 
consumption rate, there is a recovery of this 
very unknown consumption rate function 
by means of functional recovery methods. 
This approach can be applied not only in the 
analysis of intermittent demand, but in any 
area where there are processes similar to 
devastation (capacity) or the accumulation 
of some disturbance to a certain level, 
after which it is reset to the initial level 
(this method the author called “capacitive 
method”). In the financial sphere, this 
approach can also be applied, for example, 
when the client periodically requests support.

In a similar way, one might wonder what 
other processes might exist in an economy 
that generates rare events. Note that we are 
not interested in completely random events, 
which in principle is impossible (or at this 
point is not possible) to predict, we are 
interested in the events that arise from some 
process that we could formulate and then 
reproduce ourselves.

Here it is worth remembering, and what 
is the randomness itself. Randomness is 
only a measure of uncertainty, a measure 
of ignorance, an abstraction introduced to 
compact all the many unknown factors to 
the researcher. Of course, because of the 
universal study of statistics and theory 
of probability in institutions of higher 
education and already in schools, the notion 
of randomness and probability became 
almost a physical phenomenon. At the 
same time, there is a philosophical concept 
of cosmic determinism, when everything 
in the universe is predestined and a wise 
man, knowing the position and velocity of 
all particles at one time, can predict their 
position at any other time. This concept is 
opposed by the Heisenberg uncertainty 
principle, where in quantum mechanics it is 
impossible to determine both the position 
and the momentum of particles at the 
same time. We will not argue with either 
concept and argue whether there is a true 
randomness or not. The above was only 
necessary to ensure that senior colleagues 
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who have worked for many decades in the 
field of statistical research look at events 
or observations not as a statistical sample, 
and instead they tried to go deep into each 
event and they thought, what is the cause 
of this event, what is the mechanism of 
its formation. They looked at streams of 
events not as random streams, but as the 
result of some mechanism of formation of 
these events, or even the set of mechanisms 
from which the events are mixed when the 
implementation of data collection fails.

As mentioned above, many economic 
events are related to consumption processes 
(or accumulation of impact). Since we know 
how they are formed, the streams of events 
are no longer random, this knowledge brings 
in the information we need and allows us 
to better analyze them. If you do not mix 
events from different sources, in the simplest 
case it is possible to restore the speed of 
consumption on the side of the client, then 
construct a pattern model and calculate the 
next moment of consumption. For this it is 
enough to look at the values of volumes of 
purchases as integral. However, in the more 
complex case, other available information 
is required. This study focuses on how to 
recover unknown process parameters if 
different types of data are available, such 
as values at a certain point in time, values 
of the first and second derivatives at certain 
times, values of certain integrals at certain 
periods of time. And these data may be 
available all at once, and one thing may be 
available, but the sample sizes of the input 
data of the different characteristics may not 
be the same (or are zero if such data are not 
available).

2. FUNCTIONAl RECOVERY 
2.1. Optimization problem

Need to restore dynamically changing value 
of some process parameter from available 
data. Assume that this parameter changes 
continuously as some unknown function 

( )f t , i. e.  ( )f t  —   desired function.

The following data are known:

( ) ,�� 1,...,i i i fy f t i n= + ε = ;

( )' ' ,�� 1, ,j j j dfy f t j n′= + ε = … ;

( ) 2
'' '',��� 1, ,l l l d f

y f t l n=′ …′= + ε ;

( ) int
int,�� 1, ,

b
u

a
u

t

u u

t

Y f t dt u n= + ε = …∫ ,

where it , jt , lt  —  the moment of observation 
of the values of the unknown function 

( )f t , its first and second derivatives; a
ut  and 

b
ut  —   lower and upper integration range of 

the appropriate integral monitoring; ,iε  
' '' int,� ,�j l uε ε ε  —  errors of observation at values, 

first derivative, second derivative and 
integral respectively (with zero mathematical 
expectation, variances can be different);  fn , 

dfn , 2d f
n , intn  — correspondingly the number 

of observations of values, first derivatives, 
second derivatives, integrals of the desired 
function.

Of course, it  will  not be possible to 
accurately restore the original function, 
there are an infinite number of ways to 
chart the function so that the corresponding 
v a l u e s  o f  t h i s  f u n c t i o n  co m p l y  w i t h 
predetermined values at the specified 
points. You can roughly restore the function 
by  imposing certain  restr ict ions. For 
example, we can say that we will recover 
bits of polynomials (splines) of a certain 
degree (third degree is the most common). 
Will impose restrictions on the flexibility 
(roughness) of the function.

This class of tasks is called collocation 
tasks, inverse tasks, approximation tasks 
(can be considered as synonyms in this 
context). It is considered (in the English-
language literature) that the fundamental 
work of approximating the restoration of 
functions is the work G. Kimeldorf and 
G. Wahba [7]. To date, this work has been 
quoted 797 times in international citation 
databases. Studying the whole list of citing 
works and familiarization with more than 
100 full-text publications from this list 
(based on annotations) showed the lack of 
a ready solution to the problem, which is 
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solved in this article (even as presented by the author). For some reason, a lot of work is 
limited to interpolation splines, when errors are not taken into account, only interpolation 
conditions are used in the form of exact equations. In some works, it is possible to find a 
unique solution only on the basis of one functionality, not many, and mainly again with the 
help of interpolation splines [8, 9].

The decision presented by the author is based on a well written work P. J. Green and 
B. W. Silverman [10] and is based on cubic smoothing splines, which have a representation in 
the form of values and second derivatives. To restore the function for many functions, we will 
minimize several squares of deviation and nonlinearity penalty at once

               

( ) ( )( ) ( )( ) ( )( )

( ) ( )( )

2

int

2 22 ' ''

1 1 1

2

2

1

� ���� � ,�

f df d f

b
u end

a
startu

nn n

i i j j l l
i j l

t tn

u
u tt

S f y f t y f t y f t

Y f t dt f t dt

= = =

=

= − + − + −

 
 + −

′ ′′

′′+α
  

∑ ∑ ∑

∑ ∫ ∫
 (1)

where the last summand —  nonlinear penalty;  α  —   smoothing ratio (regularization); startt  and 
endt  —  the boundary at which the function is restored.

Since the values in which the values, derivatives and integrals are measured can vary 
greatly, add the appropriate coefficients so that the weight of each group of observations can 
be increased. In addition, we can change the weight of each individual observation. As a result, 
the optimization task will take the following form:

          

( ) ( )( ) ( )( ) ( )( )

( ) ( )( )

2
2

int

2 22 ' ''

1 1 1

2

2int

1

� � ���� � ,

f df d f

b
u end

a
startu

nn n
f df d f

i i i j j j l l l
i j l

t tn

u u
u tt

S f w y f t w y f t w y f t

w Y f t dt f t dt

= = =

=

= − + µ − + ν − +



′ ′′


 + ψ − +α
  

′′

∑ ∑ ∑

∑ ∫ ∫
 (2) 

where f
iw , df

jw , 
2d f

lw , int
uw  —   individual weights of the respective observation groups; 

µ —  weight of the whole group of observations of the first derivatives; ν  —  weight of the 
whole group of observations of second derivatives; ψ  —  weight of the whole integral group of 
observations. Note that there is no weight for the whole group of observations of normal values, 
i. e. it is assumed to be equal to one, and all other coefficients then show weight compared 
to this first group of observations. Note also that all individual weights could be adjusted 
proportionally to change the group weight, but this is not very convenient, so we will use both 
individual and group weights.

Next, we will restore the unknown function ( )f t  as a cubic spline ( )g t  (articulation of pieces 
of third-degree polynomials).

2.2. spline types
Instead of the usual representation of polynomials with 4 unknown coefficients 0 1 2 3, , ,a a a a  for 
each slice of spline, between nodes ks  and  1ks +

( ) ( ) ( ) ( )2 3

0 1 2 3 1� ,�� � �k k k k kg t a a t s a t s a t s s t s += + − + − + − ≤ ≤

we will use more convenient performance through spline values ( )k kg g s=  and its 
second derivative values ( )� ''k kg sγ =  at the ends of each interval (value-second derivative 
representation) [10, p. 12, 22, 23]
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( ) ( ) ( )

( )( )

1 1

1

1
1 1

1 1

1

1
1 � 1 ,

6 �

� � .

k k k k

k k

k k
k k k k

k k k k

k k

t s g s t g
g t

s s

t s s t
t s s t

s s s s

s t s

+ +

+

+
+ +

+ +

+

− + −
=

−

    − −
− − − + γ + + γ    − −     

≤ ≤

 (3)

As before, each piece of spline is identified by 4 unknown kg , 1kg + , kγ , 1k +γ , but since the end of 
one piece of spline is the beginning of the next piece, it is enough to define only two parameters 

kg , kγ  for each nodes ks  (note that the parameters kg , kγ  contain more physical meaning than 
parameters 0 1 2 3, , ,a a a a ). To define spline in all m  nodes 1 2 ... ms s s< < <  (the number of nodes m  is 
usually given a priori by the researcher) it is necessary to specify a vector of values ( )1,...,

T

mg g g=  
and the vector of second derivatives ( )2 1,...,

T

m−γ = γ γ  (the second derivative at the spline ends 
turns to zero 1 0mγ = γ =  — natural spline conditions).

This form of spline ensures continuity ( )g t  and its second derivative ( )''g t  in the articulation 
points (spline nodes ks ). However, for the continuity of the first derivative at the points of 
articulation ( ) ( )0 0k kg s g s− = ′ +′  must be done a system 2m −  equations

                
( )( ) ( )( )1 1

1 1 1 1
1 1

1 1
� 2 2 ,�

6 6

2, , 1;

k k k k
k k k k k k k k

k k k k

g g g g
s s s s

s s s s

k m

+ −
+ + − −

+ −

− −
− = − γ + γ + − γ + γ

− −
= … −

 (4)

or in matrix form

      �,TQ g R= γ  (5)

where Q  — tridiagonal matrix of coefficients at unknown kg  dimension ( )2m m× −  (column 
written); R  —  three-diagonal matrix of coefficients at unknown γ  dimension ( ) ( )2 2m m− × −  
( 1k k kh s s+= −  node distance for 1,..., 1k m= − ).

 Q  2  3  …  1m −

 1  1
1h− 0  … 0

 2  1 1
1 2h h− −− −  1

2h−  … 0

 3  1
2h−  1 1

2 3h h− −− −  … 0

 4 0  1
3h−  … 0

 …  …  …  …  …

 2m − 0 0  …  1
2mh−

−

 1m − 0 0  …  1 1
2 1m mh h− −

− −− −

 m 0 0  …  1
1mh−

−
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 R  2  3  4  …  1m −

 2  ( )1 2 / 3h h+  2 / 6h 0  … 0

 3  2 / 6h ( )2 3 / 3h h+  3 / 6h  … 0

 4 0  3 / 6h  ( )3 4 / 3h h+  … 0

 5 0  0  4 / 6h  … 0

 …  …  …  …  …

 2m − 0 0  …  2 / 6mh −

 1m − 0 0  …  ( )2 1 / 3m mh h− −+

Instead of including the continuity conditions of the first derivative TQ g R= γ  as a constraint 
system in the optimization problem, from this system of equations express one of the unknown, for 
example 1 TR Q g−γ = , replace it and solve the optimization problem with only one of the unknowns.

Penalty of smoothness (roughness) ( )( )
1

2
ms

s

g t dt′′∫  is simplified to operations with the same 
matrices, see [10, p. 24–35]:

   ( )( )
1

2 1 ,�
ms

T T T T T T

s

g t dt Q g R g QR Q g g Kg− = γ = γ γ = = ′′∫  (6)

where  1 TK QR Q−=  symmetric matrix by dimension m m× .

2.3. Recovery
As a result, we have the following task —  to determine the parameters of spline ( )g t , minimizing

                      

( ) ( )( ) ( )( ) ( )( )

( ) ( )( )

2
2

int

2 22 ' ''

1 1 1

2

2int

1

� � ���� � ,

f df d f

b
u end

a
startu

nn n
f df d f

i i i j j j l l l
i j l

t tn

u u
u tt

S g w y g t w y g t w y g t

w Y g t dt g t dt

= = =

=

= − + µ − + ν −

 
 + ψ − +α
 

′



′ ′

′′

∑ ∑ ∑

∑ ∫ ∫
 (7)

where the spline ( )g t  has a form (3).
To simplify the record, it is convenient to record the notation 1 ,k k kh s s+= −  ,i

k i kh t s− = −  1
i

k k ih s t+
+= − . 

The record of related functionalities will be as follows:

  ( ) ( ) ( )
1 1

1

,
6 6

: � � ;

i i i i i ii i
k k k k k k k kk k

i k k k k
k k k k

k i k

h h h h h h h hh h
g t g g

h h h h

k s t s

− + − − + +− +

+ +

+

+ +
= + − γ − γ

≤ <

 (8)

  
   ( ) ( ) ( )2 2

1
1

1

� � ,
6 2 6 2

: � � ;

j j
k kk k k k

j k k
k k k k

k j k

h hg g h h
g t

h h h h

k s t s

− +
+

+

+

   
   = − − − γ + − γ
   
   

≤ <

′
 (9)
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( ) 1

1

,

:� � � ;

l l
k k

l k k
k k

k l k

h h
g t

h h

k s t s

− +

+

+

′ = γ + γ

≤ <

′
 (10)

            

( ) ( ) ( ) ( )
1 1

0

1

1

: � ,

:� � � .

b a
u k l u k L

a b
k l ku u

t s t sL

l s st t

b
k L u k L

a
k u k

g t dt g t dt g t dt g t dt

L s t s

k s t s

+ + + +

+=

+ + +

+

= − − =

< ≤
≤ <

∑∫ ∫ ∫ ∫
 (11)

             

( ) ( ) ( ) ( ) ) ( ) ( )

( ) ( )

( ) ( )

3 3

1 1
0

2 2 22 2 2 22

1 1

2 22

1

2 2

2 2 24 24

2

2 2 24 24

2 2

24

L
k l k l k l k l

k l k l k l k l
l

a aa a a a
k k kk k k k k k

k k k k
k k k k

b b
k L k L k L

k L k L
k L k L

b b
k L k L k L

k

h h h h
g g

h h hh h h h h h
g g

h h h h

h h h
g g

h h

h h h

h

+ + + +
+ + + + + +

=

− −− + − +

+ +

− +
+ + +

+ + +
+ +

+ −
+ + +

+

 
= + − γ − γ 

 
 −− +

− − − γ + γ

−
− −

+
+

∑

( ) ( ) )2 2 2

1

1

1

2 �
,

24

: � ,

: ,� � �

b b
k L k L k L

k L k L
L k L

b
k L u k L

a
k u k

h h h

h

L s t s

k s t s

+ +
+ + +

+ + +
+

+ + +

+

 −
γ − γ

< ≤

≤ <

 (12)

w h e r e  i n  t h e  l a s t  ex p r e s s i o n  a a
k u kh t s− = − ,  1

a a
k k uh s t+

+= − ,  1k k kh s s+= − ,  b b
k L u k Lh t s−

+ += − , 
1 ,b b

k L k L uh s t+
+ + += −  1k L k L k Lh s s+ + + += − .
In all these expressions, at the beginning it is determined at what interval k  was observed. 

In the most recent expression for the integral, it is necessary to define at the beginning, at what 
interval k  dropped out the lower limit of integration a

ut  and at what interval k L+  has dropped 
out the limit of integration b

ut , where L  — number of intervals between them ( L  can be equal 
to 0 if both are on the same interval).

All these expressions have a linear form relative to unknown spline parameters kg  and  .kγ  
Therefore, the optimization problem (7) can be expressed in the following matrix form:

                        

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2 2 2 2

int int int int int int int

� �� 0 0

� �

� min�,

T

f f f f f f f

T

df df df df df df df

T

d f d f d f d f d f

T

T

S g Y V g P W Y V g P

Y V g P W Y V g P

Y g P W Y g P

Y V g P W Y V g P

g Kg

= − + γ − + γ +

+ µ − + γ − + γ +

+ ν − + γ − + γ +

+ ψ − + γ − + γ +

+α →

 (13)

where fY , dfY , 2d f
Y , intY  —   observation column; matrix fV , dfV , intV  —  coefficient matrices at 

unknown kg ; fP , dfP , 2d f
P , intP  —  coefficient matrices at unknown kγ ; fW , dfW , 2d f

W , intW  —   
diagonal weight matrices.
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fV  dimension fn m× , and each i-line looks like

1  …  1k −  k  1k +  2k +  …  m

0  … 0  /i
k kh h+  /i

k kh h− 0  … 0

fP  dimension ( )2fn m× − , and each i-line looks like

2  …  1k −  k  1k +  2k +  …  1m −

0  … 0  ( ) / 6i i i
k k k k kh h h h h− + ++  ( ) / 6i i i

k k k k kh h h h h− + −+ 0  … 0

dfV  dimension dfn m× , and each j-line looks like

1  …  1k −  k  1k +  2k +  …  m

0  … 0  1/ kh−  1/ kh 0  … 0

dfP  dimension ( )2dfn m× − , and each j- line looks like

2  …  1k −  k  1k +  2k +  …  1m −

0  … 0  ( )2
/ 6 / 2j

k k kh h h+− +  ( )2
/ 6 / 2j

k k kh h h−+ 0  … 0

2d f
P  dimension ( )2 2

d f
n m× − , and each �l -line looks like

2  …  1k −  k  1k +  2k +  …  1m −

0  … 0
 
/l

k kh h+−
 
/l

k kh h−− 0  … 0

intV  dimension intn m× , and each u -line is filled in as follows:

  

( ) ( )

( ) ( )

2 2

1
, , , 1 , 1

2 2

, , , 1

;� ,� 1, , ;� ;
2 2 2

;� �.
2 2

a a
k kk l k l

u k u k l u k u k
k k

b b
k L k L

u k L u k L u k L
k L k L

h hh h
V V l L V V

h h

h h
V V V

h h

+ −
+ − +

+ + +

+ −
+ +

+ + + +
+ +

+
= = = … = −

= − =

 (14)

Note that depending on L, some expressions may change twice (for example, if 0L = , that 
k-item is changed by two expressions ,i kV  and  ,i k LV + ). In the case 2L >  line u  will be
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In the case 0L =  line u  will be
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Here too, depending on L, some values may change several times. In the case 2L >  line u  will be
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Then, due to the continuity conditions of the first derivative, (5)  TQ g R= γ ,  that can express 
1 TR Q g−γ = , optimization task (13) can be written more compactly only through one unknown g:

       
( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

2 2 2 2 2�

int int int int int

�

�

� � min,

T T

f f f f f df df df df df

T

d f d f d f d f d f

T T

S g Y C g W Y C g Y C g W Y C g

Y C g W Y C g

Y C g W Y C g g Kg

= − − + µ − − +

+ ν − − +

+ ψ − − +α →

 

(16)

where 1 T
f f fC V P R Q−= − , 1 T

df df dfC V P R Q−= − , 2 2
10 T

d f d f
C P R Q−= − , 1 T

int int intC V P R Q−= − .
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Finally find the column of unknown parameters g , setting the derivatives equal from ( )S g  
to g  (rules for taking matrix derivatives 

 
( ) ( ) ( ) ( ), , 2

T T

T T
d x b d x Axd bx

b b A A x Ax
dx dx dx

= = = + = , the latter is true if A  —  symmetric matrix). 

The expression for the parameters g is as follows:

        
( )

( )
2 2 2

2 2 2

1

int int int

int int int .

T T T T
f f f df df df d f d f d f

T T T T
f f f df df df d f d f d f

g C W C C W C C W C C W C K

C W Y C W Y C W Y C W Y

−
= + µ + ν + ψ + α ×

× + µ + ν + ψ
 (17)

Knowing g , is calculated 1 TR Q g−γ = , after which you can build spline ( )g t  at any point t  on 
the (3).

2.4. select a smoothing option
In all similar function recovery (smoothing) tasks, the selection of the smoothing parameter is 

discussed separately α . The procedure for automatically selecting this option for recovery tasks 
could not be found across functions. Classic cross-validation or L-curve procedures will not work. 
No other work to automatically select the smoothing parameter for many different functionalities. 
The author had to independently obtain modified formulas to estimate cross-validation.

Recall that the basic idea of cross-validation is to choose such an anti-aliasing parameter 
α , to recover a function ( ),g t α  was effective in predicting, i. e. that the function has the least 
variance when predicting the following values. Therefore, to calculate cross-validation exclude 
one observation, build spline ( ) ( ),ig t− α  and observe the quadratic error this excluded observation 
is determined, and so do all observations. As a result, the cross validation estimate gives some 
estimate of the variance of observations as if they were predicted for spline sampled with the 
element-by-element exception of these observations. Formulas for calculating this estimate are 
as follows (without intermediate calculations):
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Here the top indexes ( )i− ,( )j− ,( )l− ,( )u−  mean, that spline ( ),g t α  estimated from data without 
this specific observation. Matrices fC , dfC ,

2d fC , intC  —   same as in formulas (16), (17). Matrices 
( ) ( )f T

f fA A C Wα = α , ( ) ( )df T
df dfA A C Wα = α µ , ( ) ( )2

2 2
d f T

d f d f
A A C Wα = α ν , ( ) ( )int

int int,
TA A C Wα = α ψ  where 

( ) ( )2 2 2

1

int int int
T T T T
f f f df df df d f d f d f

A C W C C W C C W C C W C K
−

α = + µ + ν + ψ + α . Minimization ( )CV α  any known manner 
relative to α  gives the desired smoothing parameter value α .

Cross validation works well on conventional splines. However, we have an unusual case, we 
are recovering also on the first/second derivatives and integrals. As a result, the cross-validation 
assessment shows not the usual variance of observations, but the variance of observations of both 
values and derivatives with integral (as you probably understand, mixing of different variances occurs, 
but in the construction of the spline we also mixed squares of errors of different observations). But 
the problem is that if you exclude some observations, you can dramatically change the type of the 
restored function. In the following examples (especially in the second one) it will be obvious that the 
exclusion of any observation will result in the function being very imprecise, with the forecast error 
calculated for the excluded observation. When each observation brings much needed information 
to restore the function, excluding the survey from the sample will result in very, very large errors. In 
this case cross-validation is not suitable. But if we have very many observations, some observations 
only statistically supplement the information of other observations, and the exclusion of one of the 
observations does not lead to significant changes in the restored function, cross validation method 
can be a good solution to determine the smoothing parameter.

3. R-lANGUAGE sOFTWARE IMPlEMENTATION
The described function recovery method is implemented in R for many different functional 
as a function FunctionalSmoothingSpline (see Appendix 1). Existing ready-made features and 
packages in R or other languages implementing similar capabilities could not be found.

4. UsE CAsE TO PREDICT RARE EVENTs IN AN ECONOMY
4.1. Forecasting future customer purchases

Let there be some customer who buys products from us (for example, an ordinary buyer buys 
in some trading network, or some wholesaler buys products from the manufacturer). We know 
nothing about the client, except the dates and volumes of his purchases. For simplicity, we 
model the replenishment process as in classic stock management models. Let the purchase data 
will be as follows (table. 1).

Table 1
Purchases data of a client not controlled by us

Date
it

Volume
iy

Date
it

Volume
iy

Date
it

Volume
iy

Date
it

Volume
iy

Date
it

Volume
iy

03.01.2020 2170 06.06.2020 1976 09.10.2020 2093 10.04.2021 2257 07.08.2021 1968

25.01.2020 2281 19.06.2020 2205 24.10.2020 2141 28.04.2021 2189 19.08.2021 2136

22.02.2020 2242 03.07.2020 2096 12.11.2020 2273 12.05.2021 2026 02.09.2021 2145

11.03.2020 2206 17.07.2020 2125 10.12.2020 2217 24.05.2021 2072 20.09.2021 2235

26.03.2020 2142 29.07.2020 2034 31.12.2020 2218 04.06.2021 1983 07.10.2021 2186

12.04.2020 2210 09.08.2020 1980 21.01.2021 2252 16.06.2021 2059 22.10.2021 2141

30.04.2020 2215 21.08.2020 2098 18.02.2021 2211 30.06.2021 2146 09.11.2021 2256

14.05.2020 2102 05.09.2020 2222 09.03.2021 2218 14.07.2021 2082 07.12.2021 2264

26.05.2020 2115 23.09.2020 2191 24.03.2021 2137 27.07.2021 2177 29.12.2021 2241

Source: compiled by the author.
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Perceiving this data as a sequence of 
integrals from an unknown consumption 
intensity function from the current event to 
the next, reconstruct this unknown function 
using the mathematical method described 
above (Fig. 1). Appendix 2  presents the 
implementation in R, shows how to prepare 
the data from the csv file and how to get the 
function FunctionalSmoothingSpline. For the 
current data set, the unknown consumption 
intensity function of the client beyond our 
control was restored very well.

The next step is to determine the pattern 
in the identified function, construct the model 
and extrapolate. Any known method may be 
used. The very dependence of the restored 
function can only be built on time, and it 
is possible to determine the dependence 
on some known external factors. Here the 
complete freedom and responsibility of the 
researcher is assumed. In our case, we will 
build a model and extrapolate values for the 
future as the sum of harmonic functions 
(harmonic function was laid down in the 
data modelling). Quinn-Fernandes algorithm 
well-suited to this [11, 12], which represents 
the sum of a limited number of harmonic 
functions. The result of this extrapolation 

is presented in Fig. 2. Since the restored 
function contained some deviations from the 
true function assumed in the simulation, the 
parameters of the extrapolated function were 
determined with some inaccuracy, as a result 
of which, at some sites, the extrapolated 
function is noticeably different from the true

The final step is to start the process of 
determining future events itself. In our 
case, the consumption process is restarted 
as in inventory management systems, 
where extrapolated values are involved as 
a consumption function. Starting with the 
most recent observation, it is possible to 
determine when the stock will run out and 
thus to give a forecast of the next circulation. 
If the data determine a further maximum 
reserve (or build a model for the volume of 
purchases), it will be possible to predict the 
entire sequence of future events. Fig. 2 shows 
a prediction of future events on the horizontal 
axis with crosses. And the first few events are 
determined with an error of only 0–2 days, 
further the error increases to 6 days, but then 
again reduced to 2 days (and this is with the 
time between events 15–28 days). That is, 
the first events can be defined very well, but 
when you increase the planning horizon the 
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Fig. 1. The restored intensity of product consumption on the side of the uncontrolled customer
Source: compiled by the author.

Note: solid line —  restored consumption intensity; dashed line —  original consumption rate; stepped line —  average intensity

( )1� /i i iy t t+ −  below each step means the purchase volume iy .
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accuracy drops (in this example then improves 
again), which is logical.

4.2. Determination of the hidden dynamics of 
the company on communications containing 

mainly qualitative information
Speculat ing  what  other  processes  of 
formation of events are in the economy, 
first of all come to mind those that can 
be somehow reduced to processes similar 
to the processes of consumption or the 
accumulation of disturbances (the depletion 
of stocks or the accumulation of disturbances 
to a critical level). Just a reminder that we 
don’t care about random events, where there’s 
no pattern, there’s nothing to find. Try to 
think about what else you think about, whose 
education process is different from processes 
of consumption or accumulation of impact. 
Not immediately, but after a long period 
of reflection, it was possible to formulate 
the process of producing rare events in the 
economy, different from those mentioned, 
the following will be about one such process. 
It is worth saying that the process under 
consideration demonstrates more the 
possibility of applying the proposed approach 
to the analysis of rare events than to solve 
specific practical problems, although there 
will certainly be (we are interested in the 

possibility of analyzing rare events formed by 
processes other than consumption processes).

Let there be some organization beyond 
our control, from which at certain discrete 
moments of time there are signals, carrying 
mainly qualitative (rather than quantitative) 
information. And in each signal, this 
qualitative information may relate to 
different characteristics (not necessarily that 
each signal reports all the characteristics). 
For example, imagine a situation where 
the following signals come from a certain 
company:

a) We started to sink —  we have to do 
something now!

b) We are still sinking heavily!
c) The decline seems to be slowing down.
d) We started to surface.
e) It’s good to go, if we always go like this.
f) Oh no, we’re sinking again!
g) We have passed the point of no return…
h) We’re at the bottom.
What can be learned from this set of 

signals? It is possible to guess that events 
are formed within such an organization 
by observing some internal indicator that 
changes dynamically over time (possibly due 
to some controlling effects). The occurrence 
of events is related to the operation of 
comparing this indicator with some critical 
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Fig. 2. Extrapolation of the restored function and forecast of future events
Source: compiled by the author.
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values. If we use the proposed method, restore 
the dynamics of the non-observed internal 
indicator of the organization, construct a 
model of change of this dynamic, extrapolate 
and restart the process of formation of events, 
it is possible to predict future events (and 
perhaps even controlling influences).

What do we know from this type of signal 
that will help to restore the dynamics of the 
change of the non-observed indicator directly. 
It turns out that the following data can be 
extracted from the available signals: moments 
of time as points of receipt (possibly adjusted 
for delay in receipt); values of first derivative or 
position of extremity points; values of second 
derivative or position of inflection points; 
values of the most variable in some points. 
For greater completeness, also assume that 
integrals from the function of changing the 
same unobserved indicator can be observed 
(not included in the above example, but it can 
be assumed that if the indicator of interest 
indicates funds in the accounts, the accrued 
interest on these accounts over some time 
periods will be these integrals). It should be 
noted that all observations may be inaccurate, 
and both the observations themselves and 
the significance of those observations may be 
inaccurate. However, the error in the timing of 
the observation can be reduced in one way or 
another to an error in the values of the same 
observations (for example, if the true position 
of the extremum is slightly shifted from the 
observation point at which the value of the 
derivative is shifted from zero).

Denote the unknown search function of 
hidden dynamics as ( )f t , which in the future 
will be restored according to available data in 
the form of spline. For simplicity let function 

( )f t  will be dimensionless and at the beginning 
of times 0t  the value of this function will be 
assumed as the reference value, and all other 
values will be expressed as a percentage of this 
reference value (i. e. assume that ( )0 100f t =
). Next, for example, let the original unknown 
function behave as shown in Fig. 3.

Initially it was said that we are dealing 
with primarily qualitative data, but this 
qualitative data will not be difficult to give a 

quantitative estimate, and it is enough to give 
an approximate estimate (or the values could be 
initially approximated). So, in events a, c, d, f say 
that there are zero values of the first or second 
derivatives. For events b and e suppose we know 
the tangent of the angle of inclination, for event 
g suppose (or know) that the non-return rate 
starts at 20%. We gave an approximate estimate 
of values, and moments of time of events are 
observed and known. As a result, the available 
data may be as follows (Table 2).

Notice, the sample size can be very different, 
for the second derivative we have only one 
observation. Implementing the described 
function recovery method by functional (all 
coefficients ,�� ,�� ,��µ ν ψ α  are equal 1), from the 
available data we will get the following result 
(Fig. 4). Code in R is presented in Appendix 1. 
The task proved poorly conditioned, there was 
insufficient information for a good function 
recovery (it was not specified that the function 
should have increased in the beginning).

If you add more information, for example, 
as integrals of the desired function, (Fig. 5), 
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Fig. 3. An example of the initial function ( )f t  
and the initial data
Source: compiled by the author.

Note: Function ( )f t  is dimensionless, shows the number (%) 

of the initial level (the value at the moment 0t  is taken as the 

initial). The function value data (events) are marked on the graph 

itself, the derivatives data are plotted on the horizontal axis and 

indicate their position.
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(Table. 3), then restore the original function 
gets much more accurate (Fig. 6).

Of course, recovery is still not perfect, but 
it is due to a lack of information, not a lack 
of mathematical method. If you add more 
observations, you can get a well recovery. 
Note that by adjusting the weights of both 
observations and observation groups, it 
is possible to adjust very flexibly which 
information should be paid more attention 
and which less.

Further forecasting of future events follows 
the same pattern as in the previous example 
(in this example we may not expect any future 
events).

5. AN APPROACH sCHEME 
FOR PREDICTING RARE EVENTS

Once again, separately, we give the idea of the 
approach of predicting rare events. If from rare 
events it is possible to restore the parameters 
of the process (dynamic), then further actions 
to predict rare events will be to identify the 
regularity of changes in these parameters of 
the process (their dynamics) over time. And to 
do so, all possible information should be used, 
patterns can be determined depending on 
changes in external observable factors, such 
as GDP, inflation, unemployment and other 
factors. Any existing mathematical methods 
can be used for this purpose. The purpose of 

Table 2
Available approximate data

 ft  fy  dft  dfy  2d ft  2d fy

20.02.2021 100 31.03.2021 0 19.05.2021 0

08.12.2021 20 07.05.2021 –1.75 – –

01.01.2022 0 06.07.2021 0 – –

– – 11.08.2021 1.55 – –

– – 29.09.2021 0 – –

Source: compiled by the author.
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Fig. 4. Poorly conditioned task. There was 
not enough information
Source: compiled by the author.

Fig. 5. The original function ( )f t  and the initial 
data with the additional information about the 
integrals
Source: compiled by the author.
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this step will be to construct an appropriate 
model of changing the internal parameters 
of the process. The next step is to extrapolate 
process  parameters  for  the future. I f 
previously a model of dependence on external 
factors is built, it is necessary to extrapolate 
the values of external factors beforehand. Any 
known mathematical method can be used 
again for the extrapolation phase. Finally, if 
we have an idea of how the parameters of the 
process of making events will change in the 
future, and we can reproduce the mechanism 
of this process, it will be easy to get a forecast 
of future events by running the process itself 
with set parameters. The scheme of obtaining 
a forecast of future events is presented at 
Fig. 7.

T h e  p r o p o s e d  a p p r o a c h  c a n n ot  b e 
directly compared with other methods. The 
fact is that none of the existing methods 
can predict when a future event will occur. 

Fig. 6. Restoration of a function from data with the 
additional information about integrals
Source: compiled by the author.

Table 3
Data with added information about integrals

 ft  fy  dft  dfy  2d ft  2d fy  a
intt  b

intt  intY
20.02.2021 100 31.03.2021 0 19.05.2021 0 25.03.2021 24.04.2021 4000

08.12.2021 20 07.05.2021  1,75− – – 21.10.2021 20.11.2021 2282

01.01.2022 0 06.07.2021 0 – – – – –

– – 11.08.2021  1,55 – – – – –

– – 29.09.2021 0 – – – – –
Source: compiled by the author.
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Fig. 7. scheme of the approach for predicting rare events in the economy
Source: compiled by the author.
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Some methods predict the occurrence of a 
given number of events in a certain amount 
of time or determine only the probability 
of one event in the next time interval 
(statistical methods based on Poisson and 
other flows of events, methods of analysis 
of  i rregular  demand). Other  methods 
measure the probability of an event if a 
sequence is observed among observed 
external factors or lag variables (all possible 
classification methods). Moreover, in the 
described approach it is proposed to build 
a  model  and extrapolate the restored 
dependencies of internal parameters over 
time, when in other methods all estimates 
are obtained static. In order to compare the 
proposed approach of prediction of events 
with other methods it will be necessary to 
adapt it to specific tasks of other methods. 
That is, with the help of the method it is 
necessary to give a forecast at once to 
a set of future events in an interval of 
time, and immediately from a multitude 
of sources (from different clients). This 
mixed prediction of a group of events can 
be compared with the prediction of other 
methods that work with events presented 
in the form of time series. However, it 
should be borne in mind that the proposed 
approach, in addition to the phase of 
recovery of internal parameters of the 
process, there are stages of identification 
of patterns and extrapolation of dynamics 
of the process, carried out by any known 
mathematical  method. Depending on 
which methods the researcher chooses, the 
effectiveness of the proposed approach can 
be evaluated in different ways. In order to 
compare performance with other methods, a 
separate volumetric study is necessary, and 
maybe even not one.

CONClUsION
As a result of this study, it was possible to 
develop a mathematical method of function 
recovery simultaneously for many different 
functionalities, taking into account the error 
in the observation of these functionalities. In 
Appendix 1 the software implementation of 
the method in R language is presented. Due to 
the described method it is possible to analyze 
and predict rare events that are caused by 
some processes. In case it is processes of 
consumption, it is enough to consider data 
(purchases, credits, etc.) as integral and restore 
dependencies from this sequence of integrals. 
If these are more complex processes, some 
data can also be considered as first or second 
derivatives. If we can reconstruct the dynamics 
of the process of formation of rare events 
from the data available on these events, the 
next step will be to determine the pattern and 
extrapolate this dynamics to the future. And 
at this stage the researcher is not limited and 
can use any suitable mathematical method. 
After the extrapolation stage, it is possible to 
start the process of formation of events with 
set values of internal parameters and to get a 
forecast of future events in the economy. The 
described approach can be applied in various 
areas, for example, by analyzing the data on 
the haircut of some regular customer at the 
hairdresser, you can restore the function 
of the rate of accumulation of desire to cut 
[13], and analyzing the historical data of the 
Russo-Turkish wars, you can get the speed of 
the build-up of disagreements or the speed of 
preparation for another war [14] (the latter has 
a more demonstrative character). The analysis 
and prediction of rare events is very important. 
This will allow to prepare for such events, gain 
some benefit from it or reduce possible risks 
or losses.
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Appendix 1
Implementation in R

Functionality recovery is implemented as a FunctionalSmoothingSpline function, at the input of which the 
available data is supplied.

FunctionalSmoothingSpline = function (
   t_f = NULL,           # array of observation moments
   values_f = NULL,      # array of observation values
   weights_f = NULL,     # array of  weights
   t_df = NULL,          # array of first derivative moments
   values_df = NULL,     # array of first derivative values
   weights_df = NULL,    # array of first derivative weights
   coef_df = 1,          # coefficient of first derivative sum of squares
   t_d2f = NULL,         # array of second derivative moments
   values_d2f = NULL,    # array of second derivative values
   weights_d2f = NULL,   # array of second derivative weights
   coef_d2f = 1,         # coefficient of second derivative sum of squares
   t_int_a = NULL,       # array of interals start moments
   t_int_b = NULL,       # array of interals end moments
   values_int = NULL,    # array of interal values
   weights_int = NULL,   # array of interal weights
   coef_int = 1,         # coefficient of integral sum of squares
   knots = NULL,         # knots
   knots_number = NULL,  # number of knots
   alpha = 1,            # smoothing parameter
   x = NULL,             # output moments
   info = FALSE)         # need info?
{
 
 if (is.null(knots_number) & is.null(knots))
 {
  knots_number = 0
  if (!is.null(t_f) & length(t_f)>0)
   knots_number = length(t_f)
  if (!is.null(t_df) & length(t_df)>0 & knots_number<length(t_df))
   knots_number = length(t_df)
  if (!is.null(t_d2f) & length(t_d2f)>0 & knots_number<length(t_d2f))
   knots_number = length(t_d2f)
  if (!is.null(t_int_a) & length(t_int_a)>0 & knots_number<length(t_int_a))
   knots_number = length(t_int_a)
 }
 
 if (knots_number<2)
  stop(‘knots_number or observations should not be less than 2’)
 
 m = knots_number # for short  
 
 # in case knots is not defined
 if (m != length(knots)) # when knots_number defined, but knots not defined
 {
  start_knot = + Inf
  end_knot = - Inf
  if (!is.null(t_f) & length(t_f)>0 )
  {
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   if (start_knot>min(t_f))
    start_knot = min(t_f)
   if (end_knot<max(t_f))
    end_knot = max(t_f)
  }
  if (!is.null(t_df) & length(t_df)>0)
  {
   if (start_knot>min(t_df))
    start_knot = min(t_df)
   if (end_knot<max(t_df))
    end_knot = max(t_df)
  }
  if (!is.null(t_d2f) & length(t_d2f)>0)
  {
   if (start_knot>min(t_d2f))
    start_knot = min(t_d2f)
   if (end_knot<max(t_d2f))
    end_knot = max(t_d2f)
  }
  if (!is.null(t_int_a) & length(t_int_a)>0 & length(t_int_b)>0)
  {
   if (start_knot>min(t_int_a))
    start_knot = min(t_int_a)
   if (end_knot<max(t_int_b))
    end_knot = max(t_int_b)
  }
  knots=seq(start_knot,end_knot,length = m)
 }  
 
 h = array(0,dim = m - 1) #array of distance between knots
 h[1:(m - 1)] = knots[2:m] - knots[1:(m - 1)]
 
 #Matrix Q
 Q=matrix(0, nrow = m, ncol = m - 2)
 for (i in 1:(m - 2))
 {
  Q[i,i] = 1/h[i];
  Q[i + 1,i] = - 1/h[i] - 1/h[i + 1];
  Q[i + 2,i] = 1/h[i + 1]
 }
 
 #Matrix R
 R = matrix(0, nrow = m - 2, ncol = m - 2)
 for (i in 1:(m - 2))
 {
  R[i,i] = 1/3*(h[i] + h[i + 1]);
  if (i<m - 2)
  {
   R[i + 1,i] = 1/6*h[i + 1];
   R[i,i + 1] = 1/6*h[i + 1];
  }
 }
  #Matrix K calculation
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 inv_R = solve(R)
 t_Q = t(Q)
 K = Q %*% inv_R %*% t_Q
 
 # ========= 1. Observation (t_f, values_f)  ===========
 
 if (! is.null(t_f) & length(t_f)>0)
 { 
  nf = length(t_f) #number of observation coordinates 
  if (length(values_f) != nf)
   stop(‘length of values_f and t_f must be same’)
  if (is.null(weights_f))
   weights_f = rep(1,nf)
  if (length(weights_f) != nf)
   stop(‘length of weights_f and t_f must be same’)
  Wf = diag(weights_f) 
  
  #reorder observations (t_f, values_f) by appear time t_f
  ord = order(t_f,values_f)
  t_f = t_f[ord]
  values_f = values_f[ord]
  
  #Filling in Vf and Pf matrices
  Vf = matrix(0,nrow = nf, ncol = m)
  Pf = matrix(0,nrow = nf, ncol = m)
  k = 1 # start knot
  for (i in 1:nf)
  {
   while( (knots[k]<=t_f[i]) & (knots[k+1]<t_f[i]) & (k<knots_number)) #find first k, that 
knots[k+1]>t_f[i]
    k = k+1
   hk_m = t_f[i] - knots[k]
   hk_p = knots[k+1] - t_f[i]
   Vf[i,k] = hk_p/h[k] 
   Vf[i,k + 1] = hk_m/h[k]    
   Pf[i,k] = hk_m*hk_p*(h[k] + hk_p)/(6*h[k])   
   Pf[i,k + 1] = hk_m*hk_p*(h[k] + hk_m)/(6*h[k])
  }
  Pf = Pf[1:nf,2:(m - 1)] #don’t need first and last column 
  
  #Matrix Cf calculation  
  Cf = Vf - Pf %*% inv_R %*% t_Q
  t_Cf = t(Cf) 
 }
 
 # ========= 2. Observation (t_df, values_df)  ===========  
 
 if (! is.null(t_df) & length(t_df)>0)
 {
  
  ndf=length(t_df) #number of observation  
  if (length(values_df) != ndf)
   stop(‘length of values_df and t_df must be same’)
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  if (is.null(weights_df))
   weights_df = rep(1,ndf)
  if (length(weights_df)!=ndf)
   stop(‘length of weights_df and t_df must be same’)
  Wdf = diag(weights_df) 
  
  ord = order(t_df,values_df)   #reorder observations (t_df, values_df)  by appear time t_df
  t_df = t_df[ord]
  values_df = values_df[ord]
  
  #Filling in Vdf and Pdf matrices
  Vdf = matrix(0, nrow = ndf, ncol = m)
  Pdf = matrix(0, nrow = ndf, ncol = m)
  k = 1 # start knot
  for (i in 1:ndf)
  {
   while( (knots[k]<=t_df[i]) & (knots[k+1]<t_df[i]) & (k<m)) #find first k, that knots[k + 
1]>t_df[i]
    k = k + 1
   hk_m = t_df[i] - knots[k]
   hk_p = knots[k + 1] - t_df[i]
   
   Vdf[i,k] = - 1/h[k] 
   Vdf[i,k + 1] = 1/h[k]    
   Pdf[i,k] = - h[k]/6+(hk_p)^2/(2*h[k])   
   Pdf[i,k + 1] = h[k]/6-(hk_m)^2/(2*h[k])
  }
  Pdf = Pdf[1:ndf,2:(m-1)] #don’t need first and last column 
  
  #Matrix Cdf calculation
  Cdf = Vdf - Pdf %*% inv_R %*% t_Q
  t_Cdf = t(Cdf)
  
 }
  
 # ========= 3. Observation (t_d2f, values_d2f)  ===========  
 
 if (! is.null(t_d2f) & length(t_d2f)>0)
 {
  
  nd2f = length(t_d2f) #number of observation 
  if (length(values_d2f) != nd2f)
   stop(‘length of values_d2f and t_d2f must be same’)
  if (is.null(weights_d2f))
    weights_d2f = rep(1,nd2f)
  if (length(weights_d2f) != nd2f)
   stop(‘length of weights_d2f and t_d2f must be same’)
  Wd2f = diag(weights_d2f) 
  
  #reorder observations (t_d2f, values_d2f)  by appear time t_d2f
  ord = order(t_d2f,values_d2f)
  t_d2f = t_d2f[ord]
  values_d2f = values_d2f[ord]
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  #Filling in Pd2f matrices
  Pd2f=matrix(0, nrow = nd2f,ncol = m)
  k = 1 # start knot
  for (i in 1:nd2f)
  {
   while( (knots[k]<=t_d2f[i]) & (knots[k+1]<t_d2f[i]) & (k<m)) #find first k, that 
knots[k+1]>t_d2f[i]
    k = k + 1
   hk_m = t_d2f[i] - knots[k]
   hk_p = knots[k + 1] - t_d2f[i]
   
   Pd2f[i,k] = - hk_p/h[k]  
   Pd2f[i,k+1] = - hk_m/h[k]
  }
  Pd2f = Pd2f[1:nd2f,2:(m - 1)] #don’t need first and last column 
  
  #Matrix Cd2f calculation
  Cd2f = - Pd2f %*% inv_R %*% t_Q
  t_Cd2f = t(Cd2f)
  
 }   
 
 # ========= 4. Observation (t_int_a, t_int_b, values_int)  ===========  
 
 if (! is.null(t_int_a) & length(t_int_a)>0)
 {  
  nint=length(t_int_a) #number of observation 
  if (length(t_int_b) != nint)
   stop(‘length of t_int_b and t_int_a must be same’)
  #if (length(values_int) != nint)
   stop(‘length of values_int and t_int_a must be same’)
  
  if (is.null(weights_int))
   weights_int = rep(1,nint)
  if (length(weights_int) != nint)
   stop(‘length of weights_int and t_int_a must be same’)
  Wint=diag(weights_int) 
  
  #reorder observations (t_int_a, t_int_b, values_int) by appear time t_int_a
  ord = order(t_int_a, t_int_b,values_int)
  t_int_a = t_int_a[ord]
  t_int_b = t_int_b[ord]
  values_int = values_int[ord]  
  
  #Filling in Vint and Pint matrices
  Vint = matrix(0, nrow = nint, ncol = m)
  Pint = matrix(0, nrow = nint, ncol = m)
  k = 1 # start knot
  for (i in 1:nint)
  {
   while( (knots[k]<=t_int_a[i]) & (knots[k + 1]<t_int_a[i]) & (k<m)) #find first k, that 
knots[k + 1]>t_int_a[i]
    k = k + 1      
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   #finding L, it can be 0
   for (L in 0:(m - k - 1))
    if (t_int_b[i] <= knots[k + L + 1])
     break;
   l = 1;
   hk_m = t_int_a[i] - knots[k]
   hk_p=knots[k + 1] - t_int_a[i]
   hkL_m = t_int_b[i] - knots[k + L]
   hkL_p = knots[k + L + 1] - t_int_b[i]
   
   Vint[i,k] = (hk_p)^2/h[k]/2  
   Pint[i,k] = h[k]^3/24 - (hk_m)^2*(hk_p + h[k])^2/h[k]/24    
   while (l<=L)
   {
    Vint[i, k + l] = (h[k + l - 1] + h[k + l])/2
    Pint[i, k + l] = (h[k + l - 1]^3 + h[k + l]^3)/24
    l = l + 1;
   }
   Vint[i, k + 1] = Vint[i, k + 1] - (hk_m)^2/h[k]/2
   Pint[i, k + 1] = Pint[i, k + 1] + (hk_m)^2*((hk_m)^2 - 2*h[k]^2)/h[k]/24
   Vint[i, k + L] = Vint[i, k + L] - (hkL_p)^2/h[k + L]/2
   Pint[i, k + L] = Pint[i, k + L] + (hkL_p)^2*((hkL_p)^2 - 2*h[k + L]^2)/h[k + L]/24    
   Vint[i, k + L + 1] = (hkL_m)^2/h[k + L]/2
   Pint[i, k + L + 1] = h[k + L]^3/24 - (hkL_p)^2*(hkL_m + h[k + L])^2/h[k + L]/24
   
  }
  Pint=Pint[1:nint,2:(m - 1)] #don’t need first and last column
  
  #Matrix Cint calculation  
  Cint = Vint - Pint %*% inv_R %*% t_Q
  t_Cint = t(Cint)
  
 }       
 
 # ============ Calculation =============
 
 # matrix A
 A = alpha * K
 if (! is.null(t_f) & length(t_f)>0)
  A = A + t_Cf %*% Wf %*% Cf
 if (! is.null(t_df) & length(t_df)>0)
  A = A + coef_df * t_Cdf %*% Wdf %*% Cdf  
 if (! is.null(t_d2f) & length(t_d2f)>0)
  A = A + coef_d2f * t_Cd2f %*% Wd2f %*% Cd2f  
 if (! is.null(t_int_a) & length(t_int_a)>0)
  A = A + coef_int * t_Cint %*% Wint %*% Cint 
 
 # matrix D
 D = matrix(0, nrow = m, ncol = 1)
 if (! is.null(t_f) & length(t_f)>0)
  D = D + t_Cf %*% Wf %*% values_f
 if (! is.null(t_df) & length(t_df)>0)
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  D = D + coef_df * t_Cdf %*% Wdf %*% values_df  
 if (! is.null(t_d2f) & length(t_d2f)>0)
  D = D + coef_d2f * t_Cd2f %*% Wd2f %*% values_d2f  
 if (! is.null(t_int_a) & length(t_int_a)>0)
  D = D + coef_int * t_Cint %*% Wint %*% values_int   
 
 #Calculation of g and gamma
 g = solve(A , D)
 gamma = inv_R %*% t_Q %*% g   #After that spline is completely defined via g and gamma
 
 
 # ===== Calculating and returning spline values at x coordinates  =====
 
 g2 = c(0,gamma,0) #Second derivative on the edges was zero
 
 if (is.null(x))
  x = seq(knots[1],knots[m],by=1)
 
 y = rep(0,length(x)) 
 
 k = 1; #index of interval 
 for (j in (1:length(x)))
 {
  while (x[j]>knots[k]+h[k] & k<m)
   k = k + 1;
  hk_m = x[j] - knots[k]
  hk_p = knots[k + 1] - x[j]
  y[j] = (hk_m*g[k + 1] + hk_p*g[k])/h[k] - 1/6*hk_m*hk_p*(g2[k + 1]*(1 + hk_m/h[k]) + g2[k]*(1 + 
hk_p/h[k])  )
 }
 
 if (info)
 {
  error_total = 0
  error_f = 0
  error_df = 0
  error_d2f = 0
  error_int = 0    
  error_penalty = 0
  fraction_error_f = 0
  fractio_error_df = 0
  fractio_error_d2f = 0
  fractio_error_int = 0    
  fractio_penalty = 0    
  relative_sqr_error_f = 0
  relative_sqr_error_df = 0
  relative_sqr_error_d2f = 0
  relative_sqr_error_int = 0
  relative_abs_error_f = 0
  relative_abs_error_df = 0
  relative_abs_error_d2f = 0
  relative_abs_error_int = 0  
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  if (! is.null(t_f) & length(t_f)>0)
  {
   V = values_f - Cf %*% g
   error_f = t(V) %*% Wf %*% V
   V = abs(V / values_f) 
   relative_abs_error_f = (t(V) %*% Wf %*% V) / nf
   V = V^2
   relative_sqr_error_f = sqrt((t(V) %*% Wf %*% V) / nf)
  }
  if (! is.null(t_df) & length(t_df)>0)
  {
   V = values_df - Cdf %*% g
   error_df = t(V) %*% Wdf %*% V
   V = abs(V / values_df) 
   relative_abs_error_df = (t(V) %*% Wdf %*% V) / ndf
   V = V^2
   relative_sqr_error_df = sqrt((t(V) %*% Wdf %*% V) / ndf)
  } 
  if (! is.null(t_d2f) & length(t_d2f)>0)
  {
   V = values_d2f - Cd2f %*% g
   error_d2f = t(V) %*% Wd2f %*% V
   V = abs(V / values_d2f) 
   relative_abs_error_d2f = (t(V) %*% Wd2f %*% V) / nd2f
   V = V^2
   relative_sqr_error_d2f = sqrt((t(V) %*% Wd2f %*% V) / nd2f)
  }
  if (! is.null(t_int_a) & length(t_int_a)>0)
  {
   V = values_int - Cint %*% g
   error_int = t(V) %*% Wint %*% V
   V = abs(V / values_int) 
   relative_abs_error_int = (t(V) %*% Wint %*% V) / nint
   V = V^2
   relative_sqr_error_int = sqrt((t(V) %*% Wint %*% V) / nint)
  }
  error_penalty = t(g) %*% K %*% g

  error_total = error_f + coef_df*error_df + coef_d2f*error_d2f + coef_int*error_int + alpha*error_
penalty
  fraction_error_f = error_f/error_total
  fraction_error_df = coef_df*error_df/error_total
  fraction_error_d2f = coef_d2f*error_d2f/error_total
  fraction_error_int = coef_int*error_int/error_total    
  fraction_penalty = alpha*error_penalty/error_total  
  
  result = list( x = x,
    y = y,
    error_total = error_total,
    error_f = error_f,
    error_df = error_df,
    error_d2f = error_d2f,
    error_int = error_int,    
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    error_penalty = error_penalty,
    fraction_error_f = fraction_error_f,
    fraction_error_df = fraction_error_df,
    fraction_error_d2f = fraction_error_d2f,
    fraction_error_int = fraction_error_int,    
    fraction_penalty = fraction_penalty,    
    relative_sqr_error_f = relative_sqr_error_f,
    relative_sqr_error_df = relative_sqr_error_df,
    relative_sqr_error_d2f = relative_sqr_error_d2f,
    relative_sqr_error_int = relative_sqr_error_int,
    relative_abs_error_f = relative_abs_error_f,
    relative_abs_error_df = relative_abs_error_df,
    relative_abs_error_d2f = relative_abs_error_d2f,
    relative_abs_error_int = relative_abs_error_int
   )
 }
 else 
  result = y  
 return (result) }

Appendix 2
Computing in R

Example 1
Read data from a CSV file (which contains all corresponding columns):

#================ Data input ===================
library(lubridate)
filename = « F:/DIR/Sales.csv»;

#if CSV file was generated by Excel
MyData <- read.csv(file = filename, header = TRUE, sep = «;», stringsAsFactors = FALSE, dec =»,»)
t = as.numeric(dmy(MyData[[1]]))

#if CSV file was generated by R
#MyData <- read.csv(file = filename, header = TRUE, sep = «,», stringsAsFactors = FALSE, dec =».»)
#t = as.numeric(ymd(MyData[[1]]))

Deleting missing values:

# ================= Remove NA ====================
t = t[!is.na(t)]
n = length(t)
Y = MyData[[2]]
Y = Y[1:(n - 1)] # Last value not used
origin = dmy(MyData[[1]][1]) - t[1] #will need time origin for x-axis labes

Specify the number of nodes, you can take several times more than the number of all observations:
m = round(n*3)
Function set, result is saved to variable r. If Info = FALSE, the calculated values will be displayed 

immediately y.

#=========== Calculating spline =============
r = FunctionalSmoothingSpline(#t_f = t_f,
                            #values_f = y_f,
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                            #weights_f = NULL,
                            #t_df = t_df,
                            #values_df = y_df,
                            #weights_df = NULL,
                            #coef_df = 1,
                            #t_d2f = t_d2f,
                            #values_d2f = y_d2f,
                            #weights_d2f = NULL,
                            #coef_d2f = 1,
                            t_int_a = t[1:(n-1)],
                            t_int_b = t[2:n], 
                            values_int = Y,
                            weights_int = W,
                            #coef_int = 1,
                            #knots = NULL,
                            knots_number = m,
                            alpha = 10^(4),
                            info = TRUE) 
#r
y = r$y

Rendering a chart:

#================= Plotting spline with graph of average values ==============
x = r$x
#x = seq(t[1], t[n], by = 1) # In case Info = FALSE
x2 = t[1]:t[n] #for graph of average values
y2 = rep(0, length(x2))
for (i in 1:(n - 1))
  for (j in t[i]:t[i + 1])
    y2[j-t[1] + 1] = Y[i]/(t[i + 1] - t[i])

plot(x, y, col = “red”, type = “l”, lwd = “1”, lty = 1, xaxt = “n”, ylim = range(c(y,y2)), xlim = range(c(x,x2)))
axis.Date(1, at=seq(min(dmy(MyData[[1]])), max(dmy(MyData[[1]])), by = “months”), format = “%m-%Y”)
lines(x2, y2, col = “black”, type = “l”, lwd = “1”, lty = 1)

File output:

#================ Data output ===================
MyWriteData = data.frame(t = x + origin, Value = y, x2 = x2 + origin, y2 = y2)
s2 = “F:/DIR/f_spline_out.csv”;
write.csv(MyWriteData, file = s2,row.names=FALSE)

Example 2
Read data from a CSV file (which contains all corresponding columns):

#================ Data input ===================

Library (lubridate)
filename = “F:/Dir/DiscrSignals.csv”;

#if CSV file was generated by Excel
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MyData < – read.csv(file = filename, header = TRUE, sep = “;”, stringsAsFactors = FALSE, dec = “,”)
t_f = as.numeric(dmy(MyData[[1]]))
y_f = MyData[[2]]
t_df = as.numeric(dmy(MyData[[3]]))
y_df = MyData[[4]]
t_d2f = as.numeric(dmy(MyData[[5]]))
y_d2f = MyData[[6]]
t_int_a = as.numeric(dmy(MyData[[7]]))
t_int_b = as.numeric(dmy(MyData[[8]]))
y_int = MyData[[9]]

#if CSV file was generated by R
#MyData < – read.csv(file = filename, header = TRUE, sep =“,”, stringsAsFactors = FALSE, dec =“.”)
#t_f = as.numeric(ymd(MyData[[1]]))
#t_df = as.numeric(ymd(MyData[[3]]))
#t_d2f = as.numeric(ymd(MyData[[5]]))
#t_int_a = as.numeric(ymd(MyData[[7]]))
#t_int_b = as.numeric(ymd(MyData[[8]]))

Delete missing values at the very end (CSV file had different column lengths, but missing values still 
read):

# ================= Remove NA ====================
t_f = t_f[!is.na(t_f)]
nf = length(t_f)
y_f = y_f[1:nf]
t_df = t_df[!is.na(t_df)]
ndf = length(t_df)
y_df = y_df[1:ndf]
t_d2f = t_d2f[!is.na(t_d2f)]
nd2f = length(t_d2f)
y_d2f = y_df[1:nd2f]
t_int_a = t_int_a[!is.na(t_int_a)]
nint = length(t_int_a)
t_int_b = t_int_b[!is.na(t_int_b)]
y_int = y_int[1:nint]

#will need time origin for x-axis labes
origin = dmy(MyData[[1]][1]) – t_f[1] 
#origin = ymd(MyData[[1]][1]) – t_f[1]

Specify the number of nodes, you can take several times more than the number of all observations:
m = round(3*(nf + ndf + nd2f + nint))
Function set, result is saved to variable r. If Info = FALSE, the calculated values will be displayed 

immediately y:

#=========== Calculating spline =============
r = FunctionalSmoothingSpline( t_f = t_f,
    values_f = y_f,
    t_df = t_df,
    values_df = y_df,
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    t_d2f = t_d2f,
    values_d2f = y_d2f,
    t_int_a = t_int_a,
    t_int_b = t_int_b, 
    values_int = y_int,
    knots_number = m,
    alpha = 10^(0),
    info = TRUE)
y = r$y

Rendering a chart:
#=========================== Plotting spline ==========================
x = r$x
#x = seq (min(t_f, t_df, t_d2f, t_int_a), max (t_f, t_df, t_d2f, t_int_b), by = 1) # In case Info = FALSE
xrange = range (x)
yrange = range (y)
plot(x, y, col = “red”, type = “l”, lwd = “1”, lty = 1,  xaxt = “n”, ylim = yrange, xlim = xrange)
axis (1, at = c (t_f,t_df,t_d2f,t_int_a,t_int_b), labels = as. Date (c(t_f,t_df,t_d2f,t_int_a,t_int_b), origin=origin))
#lines(x,y2,col = “black”, type = “l”, lwd=”2”, lty = 1) # In case you want add some precalculated original 
function y2 

File ouput:

#================ Data output ===================
#write to the csv fi le
MyWriteData = data.frame(x + origin, y)
s2 = «F:/DIR/f_spline_out.csv»
write.csv (MyWriteData, fi le = s2,row.names = FALSE
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