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iNtRodUCtioN
One of the central issues of risk management 
is the idea of extremum of certain risk measures 
assessed in relation to the most important risks 
for it. But in reality, a risk manager sometimes 
acts conservatively, based on the least attractive 
risk measure, which is consistent with the 
incomplete information available to it. This can 
be done by identifying an upper limit for the 
measure in a given risk class consistent with 
partially known information [1].

In this article we examine the upper limits 
of the risks assessed by certain risk measures 
distorted expectations, when the main risk is not 
fully defined and only some information about its 
timing is available. This problem is relevant for 
various reasons. First, risk measures of distorted 
expectation have many important properties 
that are generally expected to have “good” risk 
measures [2]. Second, portfolio risk measurement 
is at the center of risk management. When the 

margin functions of the allocation of portfolios as 
well as the asset dependency structure are known, 
portfolio risk can be quantified using, for example, 
Monte Carlo simulation. In most cases, however, 
full information on the dependency structure 
is not expected to be available, and various 
stakeholders, such as investors and regulators, 
may be interested in learning the worst-case 
scenario for the portfolio (i. e. scenarios where 
the risk measure reaches the highest). In this 
regard, note that there is a rich literature on the 
search for limits for the quantiles —  also called 
value at risk (VaR) portfolio, provided that all 
margin distribution functions are known, but the 
dependencies are unknown [3–8].

In this article, however, we do not fix the 
marginal distribution functions, but we get limits 
when we only know some moments of portfolio 
loss (for example, based on portfolio statistics) 
without specifying the marginal distribution 
functions.



FINANCE: THEORY AND PRACTICE   Vol. 27,  No. 3’2023  FINANCETP.FA.Ru  222

The most famous risk measures of distorted 
expectation are the VaR value and the notional 
value at risk, also called as expected shortfall ES 
measure in the literature [1]. Actually, ES is the 
smallest coherent risk measure that is more VaR 
risk measure, which is the most commonly used 
risk measure in risk management and market 
surveillance practices, but is not a subadditive 
and therefore a coherent risk measure [2]. In fact, 
VaR is a specific distribution quantum, while ES is 
more focused on the right end of the distribution 
in the sense that it measures the expected loss 
provided it is greater than Va R. Instant limits 
for VaR and ES have been studied in literature 
by several authors including Kaas, Goovaerts 
[9], Denuit etc. [10], De Schepper, Heijnen [11], 
Hürlimann [12, 13]. In particular, Hürlimann 
[12] finds analytical limits for VaR and ES with 
knowledge of medium, variance, asymmetry and 
excess.

In this context, it should be noted that it 
cannot be expect, that there is a risk measure 
(i. e. one number) that describes all risk 
characteristics and provides a complete picture 
of portfolio risk (i. e. a random value). For 
example, Hürlimann research [12] about ES for 
various two-parameter distribution functions 
with fixed mean and loss probability variance 
show that ES does not always correctly reflect 
the increase in risk (tail) from one distribution 
to another. Moreover, risk measures are used 
in different contexts such as risk management 
(McNeil et al. [14]), price formation (Wirch, 
Hardy [15]), capital allocation (Dhaene et al. [16]) 
and regulation (Danielsson et al. [17]), and risk 
management suitable for one purpose, could be 
inappropriate in another context.

V. B. Minasyan [18] introduced VaR risk 
measures in the degree t, and [19] proved that 
the VaR measures in the degree t is a subset of 
the risk measures of distorted expectation. That 
is, every VaR risk measure in the degree t 

( )( )t
pVaR  at any t ≥ 1 is a risk measures of 

distorted expectation with a certain distortion 
function. The function was presented. In the 
latest paper, a group of new risk measures called 

“ES in the degree t” ( )( )t
pES  at any confidence 

probability p and any real t ≥ 1 were introduced. 
The paper examined the relationship between 
two classes of risk measures: risk measures of 
distorted expectation and ES measures in the 
degree t, and proved that the group of ES 
measures in the degree t is a subset of the set of 
risk measures of distorted expectation. That is, 
that every ES risk measure in the degree t at any 
t ≥ 1 is risk measures of distorted expectation 
with a certain distortion function. The function 
was presented.

As mentioned, there cannot be a separate 
risk measure, which is able to cover all risk 
characteristics. There is no such ideal measure. 
The group of VaR risk measures in the degree 
t and ES in the degree t, as specified in [18, 19], 
allow to investigate the right tail of the loss 
distribution with any accuracy necessary for the 
case, i. e. to investigate the distribution tail so 
thoroughly, as required under the circumstances. 
Generally, it is reasonable to look for risk 
measures that are ideal for a particular private 
problem. Since all proposed risk measures have 
disadvantages and limitations in application, the 
choice of appropriate risk measure continues to 
be a highly discussed topic in risk management.

We offer upper limits of VaR and ES measures, 
and ( )t

pVaR  and ( )t
pES . measures in this paper. In 

addition, using the results of Hürlimann [12], we 
get the values for the maximum of ( )t

pVaR  and 
( )t
pES  risk measures, when ignorance of the theory 

of loss allocation and the use of only the first few 
points of the theory of loss allocation. In addition, 
summarizing the consideration of Hürlimann [12], 
the author presented economic capital 
assessment in hedging losses above their lowest 
possible upper level using ( )t

pES  risk measures.

uPPER LIMITS OF VAR aNd ES RisK 
MeasURes With the FiRst tWo 

MoMeNts iN loss distRibUtioN laW
Let’s start by defining the upper limit for normal 
VaR risk measure.

To this end, let’s introduce inequality from 
paper [1] (see exercise 2.7.7).

Statement 1. (Basic inequality for VaR 
through first-order moment). Let X > 0 —  is 

FiNaNCial RisKs



FINANCE: THEORY AND PRACTICE   Vol. 27,  No. 3’2023  FINANCETP.FA.Ru 223

random value representing the amount of 
poss ib le  losses . Then the  inequal i ty 
 

[ ]
[ ]

1p

E X
VaR X

p
≤

−
 is true for any p.

In the paper [18], group measures “VaR in the 
degree t” were introduced, where t —  any real 
number 1t ≥ , denoted as ( )[ ]t

pVaR X .
Any real number 1t ≥  can be uniquely 

represented as:
 ,t k= + α  where k —  natural number, and α  —  

real number, and 0 1≤ α < . Obviously, k is the 
integer part of t, and α  —  its fractional part.

In the paper [18], the following formula was 
proved, expressing them through the usual VaR 
risk measures.

For VaR risk measure in any real degree 1t ≥ , 
( )[ ]t
pVaR X  the following formula is valid:

            ( )
1 (1 ) (1 )

[ ] [ ].k
t

p p p
VaR X VaR X− − −α=           (1)

Thus, in order to calculate ( )n
pVaR , risk 

measure, need to calculate the VaR risk measure 
with a confidence probability 1 (1 ) (1 ).kp p− − − α

Then, given formula (1) and statement 1, the 
following statement is true.

Statement 2. (Basic inequality for ( )t
pVaR  

through first-order moment). Let X > 0 —  is 
random value representing the amount of 
possible losses. Then the inequality

 
( ) [ ]

[ ]
(1 ) (1 )

t
p k

E X
VaR X

p p
≤

− − α
 

 
is true for any p.

Let’s define the upper limit for ES risk 
measure.

In paper [1] (see exercise 2.7.15) it is argued 
that for any random value of X loss with an 
average µ  and variance 2σ   the following 
inequalit [ ] (1 )pES X p p≤ µ + σ −  is true for 
any p.

However, it is easy to understand that for a 
random quantity X with a random probability 
distribution such an inequality cannot be true, as 

[ ]pES X  risk measure when the confidence 

probability p is closer to 1, the value of the 
measure should approach indefinitely the upper 
limit of the loss allocation. In particular, for 
probability distributions of loss with infinite 
value (for example, for a normal distribution) 
when the confidence probability p is closer to 1, 
the value of the measure must be infinitely close 
to .+∞  However, in the given inequality, the 
upper limit for [ ]pES X  tends to the finite value 
µ , at the approach of the confidence probability 
p to 1, which, in the case of an arbitrary 
distribution, cannot be.

However, interesting is the fact of getting any 
right inequality [ ]pES X , that valid for any p.

Further, we prove the following statement.
Statement 3. (Basic inequality for ES through 

first and second order moments).
 Let X —  random value representing the value 

of possible losses with average µ  and variance 
2σ . Then inequality

2
[ ]

1
pES X

p

σ≤ µ +
−  

is true for any p.
Verification. As is known (see [1]), [ ]pES X  

risk measure is expressed through the 
appropriate VaR values as follows:

1
1

[ ] [ ] .
1p q

p

ES X VaR X dq
p

=
− ∫

According to the VaR definition we have:

 Pr[ [ ]]qX VaR X q≤ = , which is equivalent to 

[ ]
Pr[ ] .qVaR XX

q
− µ− µ ≤ =

σ σ
Then, if we mark the value of the respective 

normalized random value by

(0.1) X
X

− µ=
σ

, we get:

                                         
                        (0.1) [ ]

Pr[ ] ,qVaR X
X q

− µ
≤ =

σ
 (2)

where (0.1)[ ] 0E X =  и (0.1)[ ] 1Xσ = .
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It follows from the equation (2), that (0.1) [ ]q
q

VaR X
k

− µ
=

σ
 value is a quantile of standardized random 

 
(0.1)X  value with confidence probability q. The last ratio is followed by the following representation 

for VaR:

                 [ ]qVaR X = µ + (0.1)
qk σ . (3)

Using (3), we get the following equation for [ ]pES X :

                           

1
(0.1)[ ] .

1p q

p

ES X k dq
p

σ= µ +
− ∫  (4)

Next, we got an estimate for quantil (0.1)
qk . Take the second Chebyshev’s inequality [20] which 

states that for any random quantity X, 
2

2

[ ]
Pr[| | ]

X
X

σ− µ > ε ≤
ε

 is true for any positive ε .
Applying this inequality to the normalized random valu (0.1)X and choosing (0.1)

qkε = , we get: 
(0.1) (0.1)

(0.1) 2

1
Pr[| | ]

( )q
q

X k
k

> ≤ , which implies that

 (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)
(0.1) 2

1
1 Pr[ ] Pr[ ] Pr[| | ]

( )q q q
q

q X k X k X k
k

− ≤ > + < − = > ≤ .

From the latter inequality follows the estimate for quantile:

             
(0.1) 1

| | .
1

qk
q

≤
−       (5)

Using inequality (6), we get:

1 1
(0.1) 12 1 | 2 1

1
q p

p p

dq
k dq q p

q
≤ = − − = −

−∫ ∫ ,

from where using (4) we get:  2
[ ]

1
pES X

p

σ≤ µ +
−

, which was to be proved.

Note that the right side of the inequality is close to ,+∞  at the approach of the confidence 
probability p to 1 not contradicting that the [ ]pES X  risk measures for infinite value distributions 
approach the confidence probability p к 1 infinitely close to .+∞

In the paper [19] group measures “ES in the degree t”, where t —  any real number 1t ≥ , denoted as 
( )[ ]t
pES X .
Any real number 1t ≥  can be uniquely represented as: ,t k= + α  where k —  is a natural number, and 

α  — real number, and 0 1≤ α < . Obviously, k is the integer part of t, and α  is its fractional part.
Then for the risk measures from this group in [19] were found the next presentation, expressing 

them through the usual ES risk measures.
For ES risk measure in any real degree 1t ≥ , ( )[ ]t

pES X  the following formula is valid:

           ( )
1 (1 ) (1 )

[ ] [ ].k
t

p p p
ES X ES X− − −α=  (6)

Thus, in order to calculate the ( )t
pES , risk measure, need to calculate the ES risk measure with a 

confidence probability 1 (1 ) (1 ).kp p− − − α
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Statement 4. (Basic inequality for ( )t
pES  through first and second order moments).

Let X —  random value representing the amount of possible loss. Then the inequality

 ( ) 2
[ ]

(1 ) (1 )

t
p k

ES X
p p

σ≤ µ +
− − α

 is true for any p.

MaXiMUM VAR aNd ES RisK MeasURes,  ( )tVaR aNd ( )tES   
iN liMited distRibUtioNs

In paper W. Hürlimann [12], the following result is given about maximum values of VaR and ES risk 
measures for random values, representing relevant risks with probability distributions with limited 
and fixed values of expected values and standard deviations.

We will introduce to consider a set of random variables.
Suppose that the value of the relevant distributions is the same as [A, B] segment, and by 2D =

2([ , ]D A B ; , )µ σ  denote the set of all random values X with [A, B] (suppX = [A, B]), with the expected 
value E[X] =µ  and variance 2[ ]D X = σ .

In the paper [12] the following theorem has been proved (it is given using symbols in this paper).
Theorem 1 (Hürlimann W.). The maximum value of the VaR and risk measures on a set 

2D = 2([ , ]D A B ; , )µ σ  is defined as follows:

Case 1: if  
2

2 2

( )

( )

B
p

B

− µ≥
σ + − µ

, then
2

max{ [ ]}p
X D

VaR X
∈

=
2

max{ [ ]}p
X D

ES X B
∈

= .  

Case 2: if 
2 2

2 2 2 2

( )

( ) ( )

B
p

A B

σ − µ≤ ≤
σ + µ − σ + − µ

, then 
2

max{ [ ]}p
X D

VaR X
∈

=
2

max{ [ ]}
1p

X D

p
ES X

p∈
= µ + σ

−
. 

Case 3: if 
2

2 2( )
p

A

σ≤
σ + µ −

, then 
2

2( )( )
max{ [ ]}

( )(1 ) ( )p
X D

A B A p
VaR X

B A p A∈

µ − − − σ= µ + ≤
− − − µ −

2

max{ [ ]} ( )( ).
1p

X D

p
ES X A

p∈
≤ = µ + µ −

−

Comparing this statement with the measures upper VaR and ES risk measures given in statements 
1 and 3, it is worth noting that the measures above the estimates of these risks in theorem 1, being 
maximal on a set of random variables (risks) 2D = 2([ , ]D A B ; , )µ σ , are more accurate, and estimates 
in statements 1 and 3 may be overstated in certain cases. However, the advantage of estimates in 
statements 1 and 3 is that they are valid for any random values (risks) with not necessarily limited 
value of the relevant probability distributions.

Let’s move from the description of the maximum values of the respective ( )tVaR and ( )tES risk 
measures and any real value 1t ≥  [18, 19].

Theorem 2. The maximum value of  ( )tVaR  and ( )tES  risk measures on a set of random values 
2D = 2([ , ]D A B ; , )µ σ  is determined as follows: imagine the real number t as t m= + α , where m —  

natural number, and α  — real number within 0 1< α ≤ .

Case 1: if 0p p≥ , where 0p  —  unique solution to the equation 
2

2 2
(1 ) (1 )

( )
mp p

B

σ− − α =
σ + − µ

, then

 
2

( )max{ [ ]}t
p

X D
VaR X

∈
=

2

( )max{ [ ]}t
p

X D
ES X B

∈
= .
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Case 2: if 1 0p p p≤ ≤ , where 1p  —  unique solution to the equation
2

2 2

( )
(1 ) (1 )

( )
m A

p p
A

µ −− − α =
σ + µ −

, then

2

( )max{ [ ]}t
p

X D
VaR X

∈
=

2

( ) 1 (1 ) (1 )
max{ [ ]}

(1 ) (1 )

m
t

p mX D

p p
ES X

p p∈

− − − α= µ + σ
− − α

. 

Case 3: if 1p p≤ , then 
2

2
( ) ( )( )(1 (1 ) (1 ))

max{ [ ]}
( )(1 ) (1 ) ( )

m
t

p mX D

A B A p p
VaR X

B A p p A∈

µ − − − − − α − σ= µ + ≤
− − − α − µ −

2

( ) 1 (1 ) (1 )
max{ [ ]} ( )

(1 ) (1 )

m
t

p mX D

p p
ES X A

p p∈

− − − α≤ = µ + µ −
− − α

.

Verification. Taking into account the formulas connecting the ( )tVaR  and ( )tES  risk measures and 
the usual VaR and ES risk measures, ( )

1 (1 ) (1 )
[ ] [ ]m

t
p p p

VaR X VaR X− − −α=  and ( )
1 (1 ) (1 )

[ ] [ ]m
t

p p p
ES X ES X− − −α= , we 

understand that to obtain theorem 2 statements it is enough in theorem 1 to replace p on 
1 (1 ) (1 )mp p− − − α . 

Then Case 1 is realized with the confidence probability values satisfying the condition

 
2

2 2

( )
1 (1 ) (1 )

( )
m B

p p
B

− µ− − − α ≥
σ + − µ

, which is equivalent to the condition

     

2

2 2
(1 ) (1 ) ,

( )
mp p

B

σ− − α ≤
σ + − µ  (7)

where  
2

2 2
1

( )B

σ ≤
σ + − µ

.

For the study of the set of solutions of the last inequality, we consider the function:
( ) (1 ) (1 )mf p p p= − − α . 

Then 1( ) (1 ) (1 ) (1 )m mf p m p p p−= − − − α − α − =′ 1(1 ) [ (1 ) (1 ))mp m p p−− − − α + α − =
1(1 ) [ (1 ) ]mp p m m−= − α + − − α = 1(1 ) ( 1)[ ].

( 1)
m m

p m p
m

− + α− α + −
α +

                (8)

However, it is easy to verify that inequality 
( 1)

m
p

m

+ α≤
α +

, is always true, because inequality 
 

1
( 1)

m

m

+ α ≥
α +

, is true also, that is equivalent (1 ) 0m − α ≥ .

Then it follows from (8) that ( ) 0f p ≤′ , and therefore, the function ( ) (1 ) (1 )mf p p p= − − α  is non-
increasing, and (0) 1f = ≥

2

2 2
.

( )B

σ
σ + − µ

It follows that the equation 
2

2 2
(1 ) (1 )

( )
mp p

B

σ− − α =
σ + − µ

 has a single solution 0p  ( 00 1p≤ ≤ ),  
 
and 0p p≥  inequality is executed (7). 

This theorem is referenced in Case 1.
Case 2 is realized with confidence probability values satisfying the conditions 

 2 2

2 2 2 2

( )
1 (1 ) (1 )

( ) ( )
m B

p p
A B

σ − µ≤ − − − α ≤
σ + µ − σ + − µ

, which are equivalent to the conditions
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2 2

2 2 2 2

( )
(1 ) (1 ) .

( ) ( )
m A

p p
B A

σ µ −≤ − − α ≤
σ + − µ σ + µ −  (9)

Similarly, Case 1 proves the existence of a single value 1p  ( 1 00 1p p≤ ≤ ≤ ),  solutions of the equation  
 2

2 2

( )
(1 ) (1 )

( )
m A

p p
A

µ −− − α =
σ + µ −

, and 1 0p p p≤ ≤  inequality is executed (9).

This theorem is referenced in Case 2.
And Case 3 is realized with the confidence probability values satisfying the condition 

 2

2 2
1 (1 ) (1 )

( )
mp p

A

σ− − − α ≤
σ + µ −

, which is equivalent to the condition

        

2

2 2

( )
(1 ) (1 ) .

( )
m A

p p
A

µ −− − α ≥
σ + µ −  (10)

From previous versions, it follows that an inequality 1p p≤  is executed (10). 
This theorem is referenced in Case 3.
Comparing this statement with the estimates of upper ( )tVaR  and ( )tES , risk measures, given in 

statements 2 and 4, it is worth noting that the estimates from upper limits of these risk measures in 
theorem 2 are maximal on a set of random variables (risks) 2D = 2([ , ]D A B ; , )µ σ , and are more 
accurate, but estimates in statements 2 and 4 might prove to be higher than required. However, the 
advantage of estimates in statements 3 and 4 is that they are true for any random values (risks) with 
not necessarily a limited value of the relevant probability distributions.

ESTIMATION OF ECONOMIC CAPITAL TO HEDGE LOSSES ABOVE THEIR LOWEST POSSIBLE 
uPPER LIMIT

Let’s take some criteria for random quantities belonging to a set 2D = 2([ , ]D A B ; , )µ σ . Note that this 
criteria for 0µ =  and 1σ =  is used in paper by W. Hürlimann [12].

Criteria. For any random quantity belonging to a set 2D = 2([ , ]D A B ; , )µ σ , the following 
relationships between parameters that describing a set are valid:

a) A B≤ µ ≤ ;
b) 2 ( )( )B Aσ ≤ − µ µ − .

Verification. The first inequality follows from taking the expectation in the following random 
inequalities that are true with probability 1 for all X ∈ 2([ , ]D A B ; , )µ σ : A X B≤ ≤ .

To prove the inequality b) let’s go to take the mathematical expectation in the following inequality, 
which is true with probability 1 for all X ∈ 2([ , ]D A B ; , )µ σ : (B – X) (X – A) 0≥ .

Then we have:

2( ) 0B E X AB Aµ − − + µ ≥ ,  or

2 2 2( ) ,E X A B AB− µ ≤ µ + µ − − µ  i. e.

2 ( )( )B Aσ ≤ − µ µ − .  

Consider a company exposed to loss risks represented by random values belonging to a set 2D =
2([0, ]D B ; , )µ σ  and try to estimate a minimum level of loss B.

V.B. Minasyan
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From item b) it follows that 2 ( )Bσ ≤ µ − µ , which it follows that

2 2

2
(1 )B

σ σ≥ µ + = µ +
µ µ

.

By introducing the value k
σ=
µ

 — coefficient of variation, we get the following limit for the  
 
value B of the maximum possible loss: 2(1 )B k≥ µ + .

Thus, the maximum possible loss of the company cannot be less than the value 2(1 ).kµ +  
In these circumstances, it is necessary to hedge the company from losses exceeding this amount, 

using derivatives or buying appropriate insurance.
Furthermore, we assume, for a start, that risk capital is calculated using a  pES , risk measure and, 

for example, be assumed to be equal  
2

max{ [ ]}p
X D

ES X
∈

. (From the point of view of practice it is necessary 
to calculate it as a certain percentage of 

2

max{ [ ]}p
X D

ES X
∈

, but we focus on this assumption for simplicity).

Remember that in these assumptions from theorem 1 it follows that:

2

2

2 2

2 2

2 2 2

2

2

( )
, ,

( )

( )
max{ [ ]} , ,

1 1 ( )

(1 ) , ,
1 1

p
X D

B
B p

B

p k B
ES X p

p k B

p k
p

p k

∈

 − µ≥ σ + − µ
 − µ= µ + σ ≤ < − + σ + − µ

 + µ <

− +

when
2(1 )B k= µ +  we have:

2

2 2

( )

( )

B

B

− µ =
σ + − µ

2 2

2 2 2

( (1 ) )

( (1 ) )

k

k

µ + − µ =
σ + µ + − µ

2 4

2 2 4

k

k

µ =
σ + µ

2 2

2 2 2

k

k

σ =
σ + σ

2

2
.

1

k

k+

So we have the following compact expression for venture capital:

 
            2

2
2

2

2

2

(1 ) , ,
1

max{ [ ]}

(1 ) , .
1 1

p
X D

k
k p

k
ES X

p k
p

p k

∈


+ µ ≥ += 

 + µ < − +

 (11)

This scheme belongs to W. Hürlimann [12].
To understand the degree of caution when applying the described risk capital estimate, consider 

the numerical example.
Suppose that the confidence probability p, with which the pES , risk measure is estimated in this 

company equals p = 0.95. In addition, select the parameter value 10 .едµ =  and, by changing the 
parameter of model σ  (and therefore k), we will find out which of the conditions for equality (11) will 

FiNaNCial RisKs



FINANCE: THEORY AND PRACTICE   Vol. 27,  No. 3’2023  FINANCETP.FA.Ru 229

be fulfilled —  and calculate the risk capital value accordingly. Results of the calculations are presented 
in Table 1.

We can see that with relatively small coefficients of variation k (the first four cases), which results 
in a relatively small non-hedged part of the possible losses 2(1 )B k= µ + , in this model the risk capital 
is value at the maximum equal to 2(1 )B k= µ + . However, in the case of large coefficients of variation 
(fifth case), the model determines the amount of risk capital required in the form of 190 un., the 
smaller part of possible losses that is not hedged, which is 260 un., i. e. significantly larger.

This involves how the coefficient of variation, which can range in value from some value between 
2 and 5, is used to calculate how much economic capital should be included in the model. We 
determined this critical value of the coefficient of variation. Clearly, the change begins  
 
with  implementation of the inequality 

2

2
,

1

k
p

k
<

+
 which is equivalent to inequality 

 
0.95

4.36.
1 1 0.95

p
k

p
> = ≈

− −

Thus, at higher coefficients of variation, starting from a critical value of 4.36, the model determines 
the amount of risk capital required as the value of the smaller, non-hedged part of the potential losses.

We continue to consider our company, which was hedged from losses exceeding the value of 
2(1 )kµ + , using derivatives or buying appropriate insurance.

In addition, suppose that the risk capital is calculated using the ( )n
pES , risk measure, where n —  

natural number (n > 1), and, for example, be assumed to be equal 
2

( )max{ [ ]}n
p

X D
ES X

∈
.

We will remind that in these assumptions from theorem 2 it follows that:

Table 1
Calculation of Risk Capital 

2
0.95max{ [ ]}

X D
ES X

∈
 at Different Values of Parameters ,kσ

No. ,kσ 2

21

k

k+
Criterion

2
0.95max{ [ ]}

X D
ES X

∈

1 2 ., 0.2un kσ = = 0.039
2

21

k
p

k
≥

+
10.4B =

2 5 ., 0.5un kσ = = 0.2
2

21

k
p

k
≥

+
12.5B =

3 10 ., 1un kσ = = 0.5
2

21

k
p

k
≥

+
20B =

4 20 ., 2un kσ = = 0.8
2

21

k
p

k
≥

+
50B =

5 50 ., 5un kσ = = 0.96
2

21

k
p

k
<

+
(1 ) 190 260

1

p
B

p
+ µ = < =

−

Source: Designed and compiled by the author.
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2

2

2 2

2
( )

2 2 2

2

, 1 ,
( )

1 (1 ) 1
max{ [ ]} ,1 1 ,

(1 ) 1 ( )

1 (1 ) 1
(1 ) , 1 .

(1 ) 1

n

n
n n n

p nX D

n

n
n

B p
B

p
ES X p

p k B

p
p

p k

∈

 σ ≥ −
σ + − µ


− − σ= µ + σ − ≤ < −

− + σ + − µ
 − − + µ < −
 − +

However, in

 2(1 )B k= µ +  we get:

2

2 2
1

( )
n

B

σ− =
σ + − µ

2

2 2 2
1

( (1 ) )
n

k

σ− =
σ + µ + − µ

2

2 2 4
1 n

k

σ− =
σ + µ

2

2 2 2
1 n

k

σ= − =
σ + σ 2

1
1 .

1
n

k
−

+

We get the next compact equation for venture capital:

                            2

2
2

( )

2

1
(1 ) , 1 ,

1
max{ [ ]}

(1 (1 ) 1
(1 ) , 1 .

(1 ) 1

n

n
p nX D

n
n

k p
k

ES X
p

p
p k

∈


+ µ ≥ −

+= 
− − + µ < − − +

 (12) 

 To understand the degree of caution with the application of the described assessment of risk 
capital, consider the numerical example.

Let’s assume that for estimation of economic capital with model the ( )n
pES  risk measure at n = 2, i. e. 

(2)
pES .
Suppose again that the confidence probability p, with which the (2)

pES , risk measure is assessed in 
this company equals p = 0.95. In addition, select the parameter 10 .unµ =  and, by changing the 
parameter value of the model σ  (and therefore k), we will find out which of the conditions in equality 
(12) will be fulfilled, and calculate the value of risk capital accordingly. Results of the calculations are 
presented in Table 2.

We see that for all the same values of the coefficients of variation k in this model with the 
application of (2)

0.95ES  risk measure instead of 0.95ES  risk capital is valued at a maximum and equal 
2(1 )B k= µ + . That is (2)

0.95ES  risk measure is more cautious than 0.95ES .
Clearly, there will be a change in the way economic capital is measured in this model, depending 

on the value of the coefficient of variation, ranging with some value. We defined this critical value of 
the coefficient of variation. It is clear that change begins with the implementation of inequality  
 

2

1
1 ,

1
p

k
< −

+
 which is equivalent to inequality

 
 
 2 2

2 2

1 (1 ) 1 (1 0.95)
19.98.

(1 ) (1 0.95)

p
k

p

− − − −> = ≈
− −
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At all such values k, the risk capital value is equal 
2

2
(2)
0.95 2

1 (1 0.95)
max{ [ ]} (1 )10 4000

(1 0.95)X D
ES X un

∈

− −= − =
−

., 
 
while the non-hedged part of possible losses even at k = 20 is equal 2(1 ) 4010.B k= µ + =

Thus, at high coefficients of variation, starting from the critical value of 19.98, the model 
determines the amount of risk capital required in the form of the value of a smaller, non-hedged part 
of possible losses. That is, starting with such large coefficients of variation, and this model do not 
cautious as possible. Further, if the risk capital model based on (3)

0.95ES , risk measure is applied, it turns 
out that the corresponding critical value of the coefficient of variation is even higher —  about 89.44 
etc.

Let’s continue to consider our company, which was hedged against losses exceeding the 2(1 )kµ + , 
value, using derivatives or buying appropriate insurance.

In addition, suppose that risk capital is calculated using ( )t
pES , risk measures, where t —  real 

number (t > 1), and, for example, be assumed to be equal 
2

( )max{ [ ]}t
p

X D
ES X

∈
.

Consider the number t as t m= + α , where m —  natural number, and α  real number when 0 1< α ≤ . 
Keep in mind that from these theorem 3 assumptions, it follows that

Table 2
Calculation of Risk Capital 

2

(2)
0,95max{ [ ]}

X D
ES X

∈
 at Different Values of Parameters ,kσ

No. ,kσ
2

1
1

1 k
−

+
Criterion

2

(2)
0,95max{ [ ]}

X D
ES X

∈

1 2 ., 0.2un kσ = = 0.194
2

1
1

1
p

k
≥ −

+
10.4B =

2 5 ., 0.5un kσ = = 0.1055
2

1
1

1
p

k
≥ −

+
12.5B =

3 10 ., 1un kσ = = 0.29
2

1
1

1
p

k
≥ −

+
20B =

4 20 ., 2un kσ = = 0.553
2

1
1

1
p

k
≥ −

+
50B =

5 50 ., 5un kσ = = 0.804
2

1
1

1
p

k
≥ −

+
260B =

Source: Designed and compiled by the author.
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2

0

( )
1 0

1

, ,

1 (1 ) (1 )
max{ [ ]} , ,

(1 ) (1 )

1 (1 ) (1 )
(1 ) , .

(1 ) (1 )

m
t

p mX D

m

m

B p p

p p
ES X p p p

p p

p p
p p

p p

∈


 ≥
 − − − α= µ + σ ≤ <

− − α
 − − − α + µ <

− − α

Remember, that 0p  — is unique solution to the equation
2

2 2
(1 ) (1 ) ,

( )
mp p

B

σ− − α =
σ + − µ

and 1p  — is unique solution to the equation
2

2 2
(1 ) (1 ) .mp p

µ− − α =
σ + µ

However, in 2(1 )B k= µ +  we get:

2

2 2( )B

σ =
σ + − µ

2

2 2 2( (1 ) )k

σ =
σ + µ + − µ

2

2 2 4k

σ =
σ + µ

2

2 2 2k

σ =
σ + σ 2

1

1 k
=

+

2

2 2
,

µ
σ + µ

i.e. 0 1p p= .

Therefore we have the following compact equation for venture capital:

             2

2
0

( )

0

(1 ) , ,

max{ [ ]} (1 (1 ) (1 )
(1 ) , .

(1 ) (1 )

t m
p

X D
m

k p p

ES X p p
p p

p p
∈

 + µ ≥
=  − − − α+ µ < − − α

 (13)  

To understand the degree of caution with the application of the described assessment of risk 
capital, consider the numerical example.

Suppose that the ( )t
pES  risk measure is chosen to estimate the economic capital using this model 

with t = 1.5, i. e. (1.5)
pES .

Suppose again that the confidence probability p, with which the (1.5)
pES , risk measure is assessed 

in this company equals p = 0.95. In addition, select the value of the parameter 10 .unµ =  and, by 
changing the parameter of the model σ  (and therefore k), we will find out which of the conditions in 
equality (13) will be fulfilled and calculate the value of risk capital accordingly.

Note that the choice in the formula (13) of an expression to calculate risk capital depends on 
whether the (1 ) (1 )mp p− − α value is greater or less than the 

2

1

1 k+
. However, in the present case m = 1 

and 0.5α = , then (1 ) (1 ) 0.02625mp p− − α = .
Results of the calculations are presented in Table 3.
We see that for all the same values of the coefficients of variation k in this model using the (1.5)

0.95ES  
risk measure, the risk capital is valued at the maximum equal to 2(1 )B k= µ + . That is, the (1.5)

0.95ES  risk 
measure as well as (2)

0.95ES , is more cautious than 0.95ES .
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Now suppose that the ( )t
pES  risk measure is chosen to estimate economic capital using this model, 

when t = 1.2, i. e.  (1.2)
pES .

Suppose again that the confidence probability p, with which (1.2)
pES , risk measure is assessed in this 

company equals p = 0.95. In addition, we choose the parameter 10 .unµ = , and by changing the 

Table 3
Calculation of Risk Capital 

2

(1.5)
0.95max{ [ ]}

X D
ES X

∈
 at Different Values of Parameters ,kσ

No. ,kσ
2

1

1 k+
Criterion

2

(1.5)
0.95max{ [ ]}

X D
ES X

∈

1 2 ., 0.2un kσ = = 0.96
2

1
0.02625

1 k
<

+
12.5B =

2 5 ., 0.5un kσ = = 0.8
2

1
0.02625

1 k
<

+
12.5B =

3 10 ., 1un kσ = = 0.5
2

1
0.02625

1 k
<

+
20B =

4 20 ., 2un kσ = = 0.2 2

1
0.02625

1 k
<

+
50B =

5 50 ., 5un kσ = = 0.039 2

1
0.02625

1 k
<

+
260B =

Source: Designed and compiled by the author.

Table 4
Calculation of Risk Capital 

2

(1.2)
0.95max{ [ ]}

X D
ES X

∈
 at Different Values of Parameters ,kσ

No. ,kσ
2

1

1 k+
Criterion

2

(1.2)
0.95max{ [ ]}

X D
ES X

∈

1 2 ., 0.2un kσ = = 0.96
2

1
0.0405

1 k
<

+
12.5B =

2 5 ., 0.5un kσ = = 0.8
2

1
0.0405

1 k
<

+
12.5B =

3 10 ., 1un kσ = = 0.5
2

1
0.0405

1 k
<

+
20B =

4 20 ., 2un kσ = = 0.2
2

1
0.0405

1 k
<

+
50B =

5 50 ., 5un kσ = = 0.039
2

1
0.0405

1 k
<

+

1 (1 0.95)(1 0.2 0.95)
(1 ) 10

(1 0.95)(1 0,2 0.95)

246,9

− − − ⋅+ ⋅ =
− − ⋅

=

Source: Designed and compiled by the author.
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parameter value of the model σ  (and therefore k), we will find out which of the conditions in equality 
(13) will be fulfilled and calculate the risk capital value accordingly.

Note that the choice in the formula (13) of an expression to calculate risk capital depends on 
whether the (1 ) (1 )mp p− − α value is larger or smaller than the 2

1

1 k+
 value. However, in the present case 

m = 1 and 0.2α = , and therefore (1 ) (1 ) 0.0405mp p− − α = .
Results of the calculations are presented in Table 4.
We observe that with relatively small coefficients of variation k (the first four cases), which results 

in a relatively small non-hedged part of the possible losses 2(1 )B k= µ + , in this model the risk capital 
is valued at the maximum equal to 2(1 )B k= µ + . However, in the case of large coefficients of variation 
(fifth case), the model determines the amount of risk capital required in the form of 246.9 un., smaller 
than the non-hedged part of the possible losses, which is 260 un., i. e. significantly larger.

It is clear that this change in the behavior of the measurement of economic capital in a given 
model, depending on the value of the coefficient of variation, occurs at some value between 2 and 5. 
And risk capital valuation models using ( )t

pES  risk measures at 1.5t ≥  are much more cautious than 
the corresponding models a 1.2t ≤  and at the model parameter t, there is also some critical value 

00.2 1.5t< < , where there is a transition from one policy (less cautious) selection of risk capital to 
another (more cautious).

MaXiMUM VAR aNd ES RisK MeasURes, ( )tVaR aNd ( )tES   
iN UNliMited distRibUtioNs

In the paper of W. Hürlimann [12], the following result is given about the maximum values of VaR and 
ES risk measures for random values, representing relevant risks with probability distributions with 
unlimited and fixed values of expected values and standard deviations, coefficients of asymmetry and 
excesses.

That is, it focuses on the set 4(( , )D −∞ ∞ ; 2, , , )µ σ γ γ  random quantities with values on ( , )−∞ ∞  with 
average µ , variance 2σ , asymmetry γ  and excesses 2γ . In all phases, the following extra variables will 
be used:

         2
22 ,∆ = + γ − γ  21

( 4 ),
2

c = γ − + γ 1 21
( 4 )

2
c c−= − = γ + + γ . (14)

The following theorem is proved in paper [12] (is used in the article with symbols).
Theorem 3. The maximum value of VaR for set 4D  is equal

4

max{ [ ]}p p
X D

VaR X x
∈

= µ + σ , 

where px  — quantile standardised maximum distribution (4)
,max ( )STF x  The following cases provide it:

Case 1:  
2

1
1 ( ) (1 ), ( ) 1

2 4
pp P c p x p

γ≥ − = + = −
+ γ

.

Case 2: 
2

1
1 ( ) (1 ),

2 4
p P c

γ< − = +
+ γ

( ( )) ,pp x pψ =

where ( )xψ  and ( )p x  functions defined as:

            

2( ) ( ) 4 ( ) ( )1
( ) ( ),

2 ( )

A u A u q u B u
u

q u

− +
ψ =                                                 (15)
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             ( ) ( ) ,A u q u u= γ + ∆ ( ) ( ),B u q u= ∆ + 2( ) 1 ,q u u u= + γ −                               (16)
 
            2 2

( ) .
( ) (1 )

P u
q u u

∆=
+ ∆ +  (17)

Comparing this statement with the upper limits of VaR risk measure given in statement 1, it is 
worth noting that the upper evaluation of this risk measure in the theorem, being maximum on a set 
of random variables (risks) 4(( , )D −∞ ∞ ; 2, , , )µ σ γ γ , is more accurate, and the rating in statement 1 may 
be overstated in certain cases. However, the advantage of an estimate in statement 1 is that it is true 
for any random values (risks) with a fixed expected value but with arbitrary values of standard 
deviation, asymmetry, and excesses, whereas the assessment in theorem 4 is valid with fixed values 
of standard deviation, coefficients of asymmetry, and excesses. In addition, the maximal upper 
estimator algorithm in theorem 4 requires numerical methods because there is no straight formula 
to calculate it, whereas the estimate according to proposition is extremely simple.

Proceed to a description of the maximum values of the respective ( )tVaR  risk measures at any valid 
value 1t ≥  (see [18, 19]).

Theorem 4. The maximum value ( )tVaR  on a set of random variables 4D  is defined as follows: let’s 
suppose the real number t as t m= + α , where m —  natural number, and α  — real number within 
0 1< α ≤ .

Then 
4

( )
1 (1 ) (1 )

max{ [ ]} m
t

p p pX D
VaR X x − − −α∈

= µ + σ , where px  —  quantile standardized maximum  
 
distribution (4)

,max ( )STF x  it is obtained as follows:

even if 0p   is unique solution to the equation 
2

1
(1 ) (1 ) (1 )

2 4

mp p
γ− − α = −
+ γ

, then:

Case 1: if 0p p≥ , then 
1 (1 ) (1 )

( ) (1 ) (1 ),m
m

p p
P x p p− − −α = − − α

Case 2: if 0,p p< then 
1 (1 ) (1 )

( ( )) 1 (1 ) (1 ).m
m

p p
P x p p− − −αψ = − − − α

Verification. Given the formula linking ( )tVaR  risk measures to the usual VaR risk measure:
( )

1 (1 ) (1 )
[ ] [ ]m

t
p p p

VaR X VaR X− − −α= , we understand that to obtain theorem 2, it is sufficient in theorem 1 to 
replace p by  1 (1 ) (1 )mp p− − − α . 

Then case 1 is realized with the confidence probability values satisfying the condition
 

2

1
1 (1 ) (1 ) (1 )

2 4

mp p
γ− − − α ≥ +
+ γ

, which is equivalent to the condition

                                                            
2

1
(1 ) (1 ) (1 )

2 4

mp p
γ− − α ≤ −
+ γ

, (18)

where 
2

1
(1 ) 1

2 4

γ− ≤
+ γ

.

Theorem 3’s proof, then, also establishes the existence and originality of the solution 0p   
 
equations 

2

1
(1 ) (1 ) (1 )

2 4

mp p
γ− − α = −
+ γ

, with 0p p≥  is inequality (18), and  0p p<  is inequality  
 
opposite to (18). The proof of theorem 4 follows consequently and from theorem 3.

V.B. Minasyan



FINANCE: THEORY AND PRACTICE   Vol. 27,  No. 3’2023  FINANCETP.FA.Ru  236

The following theorem is proved in paper [12] (is used in the article with symbols).
Theorem 5. The maximum value of ES on the set 4D  equal

 
4

(4)
max

1
max{ [ ]} { ( ) ( )( )} ,

1p p p
X D

ES X d y d y
p∈

= µ + + π σ
−

  

where quantile of the maximum distribution (4)
,max ( )SLF x  of the standardised stop-loss of order (see 

[29]) is derived from the following equations:

Case 1: if 1 ( ),p P c≥ − then ( ) 1 ,pP y p= −

Case 2: if 1 ( )p P c< − , then ( )pP y p= ,

where ( )P x  is determined from (18),

1 { ( , ( )) }{ ( )} 2 { ( ) }
( ) ,

2 { ( , ( )) } { ( ) }

x x x x x x x x
d x

x x x x x

φ ψ − + ψ + ψ −=
φ ψ − + ψ −

( , ) ,
1

u v
u v

uv

γ − −φ =
+

(4)
max

( )( ( ) ) ( ),
( ( ))

( )( ( )),

P x d x x d x x c
d x

P x x d x x c

− − <
π =  − ≥

Proceed to a description of the maximum values of the respective ( )tES risk measures at any real 
value 1t ≥  (see [18, 19]).

Theorem 6. The maximum value ( )tES  on a set of random variables 4D  is defined as follows: 
imagine the real number t as t m= + α , where m —  natural number, and α  —  real number within 
0 1< α ≤ .

 
  4

( ) (4)
max1 (1 ) (1 ) 1 (1 ) (1 )

1
max{ [ ]} { ( ) ( )( )} ,

(1 ) (1 )
m m

t
p mp p p pX D

ES X d y d y
p p− − −α − − −α∈

= µ + + π σ
− − α

  

where ( )pd y  — where quantile of the maximum distribution (4)
,max ( )SLF x  of the standardised stop-loss 

of order (see [12]) is derived from the following equations.
Even if 0p  — is unique solution to the equation (1 ) (1 ) ( )mp p P c− − α = .
Then:
Case 1: if  0,p p≥  then 

1 (1 ) (1 )
( ) (1 ) (1 ),m

m
p p

P y p p− − −α = − − α

Case 2: if 0p p< , then 
1 (1 ) (1 )

( ) 1 (1 ) (1 ).m
m

p p
P y p p− − −α = − − − α

Verification. Given the formula linking ( )tES  risk measures to the usual ES risk measure, 
( )

1 (1 ) (1 )
[ ] [ ]m

t
p p p

ES X ES X− − −α= , we understand that to obtain theorem 2, it is sufficient in theorem 1 to 
replace p by 1 (1 ) (1 )mp p− − − α . 

Then case 1 is realized with the confidence probability values satisfying the condition 
1 (1 ) (1 ) 1 ( )mp p P c− − − α ≥ − , which is equivalent to the condition (1 ) (1 ) ( )mp p P c− − α ≤ . (19)
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Theorem 3’s proof, then, also establishes the existence and originality of the solution 0p  of 
equation (1 ) (1 ) ( )mp p P c− − α = , with 0p p≥  is inequality (19), and 0p p<  is inequality opposite to (19). 
The proof of theorem 7 follows consequently and from theorem 8. 

CoNClUsioN
Exploring the upper limits of various risk measures, including catastrophic risk measures, is of both 
scientific and practical interest. They are practical for quick risk assessments, which are easy to apply 
if the upper limits have clear and straightforward expressions. Cases when they are articulated just 
after the first few moments of the rule of loss allocation and do not require understanding of the law 
of distribution itself are particularly significant.

The paper examines the upper limits for known risk measures such as VaR risk measure, and the 
expected shortfall or imputed value at ES risk measure. Then the upper limits for measures introduced 
by the author in the scientific state of VaR catastrophic risks in the degree t, ( )tVaR and ES in the 
degree t,  ( )tES .

The paper also describes the results of W. Hürlimann on the maximum values of VaR and ES risk 
measures, and with the application of these results the representations for maximum values of ( )tVaR
and ( )tES  risk measures.

Using W. Hürlimann, in the paper provides an estimate of the value of economic capital by means 
of ( )tES  risk measures depending on the coefficient of variation of losses in hedging losses above their 
lowest possible upper limits.
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