
FINANCE: THEORY AND PRACTICE   Vol. 27,  No. 6’2023  FINANCETP.FA.Ru  44

iNtRodUCtioN
Missing data is a common problem in many 
empirical studies. It is also found in finance, 
especially when it comes to emerging, low-
liquidity markets. The presence of gaps in the 
data complicates the assessment of financial 
models and may distort conclusions. Market 
data gaps can arise for a variety of reasons, for 
example, due to low liquidity of the instrument, 
data censoring, or the filtering of outliers.

In liquid developed markets, the problem 
of missing data is generally ignored because 
missing observations are not frequent. 
Researchers focus more on model specification 
rather than on data quality issues.

In less liquid markets, missing observation 
are more frequent. Simply removing gaps in data 
can lead to the loss of important information. 
Therefore, researchers often pre-process the 
data. The choice of the method for missing 
data treatment is usually made ad-hoc, and the 
processing of the data itself is an auxiliary step 

on the way to answering the main research 
questions.

In the paper, we explore the treatment of 
missing observations in market data in more 
detail in relation to the task of estimating the 
bond yield curve. Our goal is to develop practical 
recommendations on how to deal with gaps in 
market data when estimating the term structure 
of interest rates.

To illustrate the problem and its possible 
solutions in practice, we use data on the trading 
of Russian Federal Loan Bonds (further —  FLBs). 
We investigate how filling gaps in the trading 
data affects the estimation quality of the yield 
curve. This is an important topic subject since 
yield curve estimation in emerging markets 
is sometimes negatively impacted by gaps in 
market data [1].

The novelty of the paper is the application of 
statistical tools from the field of incomplete data 
analysis to the tasks of financial engineering. 
We show that the issues of data quality and 
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completeness in emerging markets require no 
less attention than the questions of financial 
model choice.

liteRatURe ReVieW
In statistical science, there is a separate area 
dedicated to the formal analysis of missing data 
[2–4]. Data gaps are dangerous for two reasons. 
First, they can lead to shifted estimates of model 
parameters. Second, they increase the standard 
error of model coefficients and reduce the power 
of statistical tests [5].

One can safely remove the gaps from the 
analysis only if they are completely random, 
i. e. they are not dependent on their own non-
observed values or on the values of other 
observations. If missing observations are 
simply random, i. e. they do not depend on their 
own missed value, but on the values of other 
parameters, then missed data can be restored by 
means of conditional imputation. If gaps are not 
random, then to fill them, you need to know the 
process that generates the gaps [3].

Gaps in market data can be both random and 
non-random. Non-random gaps can arise, for 
example, when trade in a stock or bond stops 
due to an unexpected decline in the price of the 
stock or bond (for example, suspension of trading 
in the Russian market in February–March 2022). 
Such cases must be examined independently, 
with special emphasis on the reasons behind 
missing observations.

With random missing data, on the contrary, 
you can work effectively. There are two ways to 
do this. The first option is to adapt the model 
to address data gaps. This is a more correct 
way, but it complicates the model, depends 
on its properties and specifications, and is not 
universal. Please refer to [6–8] for the description 
of missing data treatment in yield curve 
estimation tasks.

The second option to work with gaps is to 
pre-fill gaps in the data. The advantages of the 
approach are its ability to retain a simple original 
model, as well as to use the processed data for 
other purposes. As part of our study, we are 
considering this more general option.

In practice, the most common solution to the 
problem is to remove gaps [9]. This is a simple 
solution, but it leads to the loss of some important 
information. In some situations, it may be useful 
to impute the missing data. A general overview of 
possible data imputation methods is presented 
in the papers [10, 11]. With regards to financial 
problems, both advanced methods of filling gaps in 
the data are used (EM-algorithm [12, 13], Bayesian 
model with Markov chain Monte Carlo [14]), as 
well as simpler methods (last observation carried 
forward [15] and the last weighted value [16]). In 
the cited examples methods for missing market 
data treatment are chosen without much of 
justification. There is usually no description of how 
the strategy used to fill gaps influences the results 
achieved. Data imputation is mentioned only as an 
intermediate step towards answering key research 
questions. In this regard, it is important to address 
the problem of missing market data in greater 
detail and to compare the methods of processing 
them for financial objectives.

MethodoloGY
Yield curve estimation models

We illustrate the importance of the problem of 
processing gaps in market data with an example 
of constructing a yield curve in a bond market. 
The yield curve shows the relationship between 
interest rates and maturity. It has multiple 
practical uses ranging from macroeconomic 
forecasting to risk management and pricing 
of financial instruments. In emerging markets, 
estimation of the yield curve is often complicated 
by gaps in market data [1]. Therefore, the task 
of implying the yield curve from the data with 
missing observations seems important and 
relevant.

There are many models for yield curve 
estimation. All of them are based on the general 
principle that information about the unobserved 
yield curve is derived from observed market 
information, for example, from the prices of 
coupon bonds. An overview of yield curve models 
can be found in the paper [17].

When choosing the current interest rate 
term structure model, the quantity and quality 

M. S. Makushkin, V. A. Lapshin



FINANCE: THEORY AND PRACTICE   Vol. 27,  No. 6’2023  FINANCETP.FA.Ru  46

of data available for calibration must be taken 
into account [18]. The model should be as 
complex and accurate as the available data 
allows. Where the number of available data is 
limited, conservative assumptions and simpler 
models should be used. Therefore, for market 
data with gaps, it is advisable to consider two 
models of the yield curve with varying degrees of 
data quality sensitivity. We select a very simple 
but stable Nelson-Siegel yield curve model [19] 
and a more flexible but less stable interest-rate 
bootstrapping method [20].

The Nelson-Siegel model in the factor 
specification [21] describes the yield ( )y τ  for 
maturity τ  with the following equation:

( ) ( )1 2 3

1 1
,

e e
y e

−λτ −λτ
−λτ   − −τ = β + β + β − + ε τ   λτ λτ   

  (1)

where { }1 2 3,� ,� ,��θ = β β β λ  — model parameters 
vector, and; ( )ε τ  —  error.

In fact, the rate of ( )y τ  in the model is the 
weighted sum of three factors, where factors are 
weighted by 1 2 3,� ,�β β β . These weights can be 
interpreted as the level, slope and curvature of 
the yield curve. The fourth parameter λ  
describes the relative position of the curvature 
on the chart.

The Nelson-Siegel model captures quite well 
the empirically observed shapes of the yield 
curve. Therefore, it is used some way by many 
financial institutions.1 In particular, the model 
of the G-curve of the Moscow Stock Exchange 2 is 
based on the Nelson-Siegel variation of the yield 
curve. The model is also popular in emerging 
markets and low-liquidity markets, as it has 
only four parameters that can be conveniently 
calibrated to a small set of market data available 
[22, 23].

Estimation of model parameters can be 
done by minimizing the average square error of 
revaluation of bond yields, or directly from the 
bond prices. A description of technical details 

1 Bank of International Settlements. Zero-coupon yield curves: 
Technical documentation. BIS Papers. 2005;(25).
2 MOEX (2021). Zero-coupon Yield Curve for Sovereign Bonds. 
https://www.moex.com/a3642 (accessed on 09.11.2022).

behind the yield curve estimation can be found, 
for example, in paper [24]. We choose to calibrate 
the yield curve model directly to the coupon 
bond prices, because zero-coupon yields on the 
FLB market are not observed directly.

If the vector P , of coupon bond prices is given, 
the task of estimating the parameters of the yield 
curve is described by the following equations:

              
  ( ) 2argmin ( ) ,�

N

i i
i

P P
θ

θ = θ −∑   (2)

                       



( )
1

,
i

ij ij

J
y

i ij
j

P CF e
− τ τ

=

= ∑   (3)

where j  —  serial number of cash flow; J  —   total 
number of cash flows, and; ( )ijy τ  —   zero-coupon 
rate, corresponding to the time ijτ  till payment of  

ijCF  on the bond i . In fact, the model is 
estimated as a classical regression, so all data 
instabilities are smoothed at the calibration 
stage.

Bootstrap is a more data-sensitive method. It 
is based on the idea of sequential calculation of 
the zero-coupon rate in order of increasing the 
maturity of bonds. Given the values of bonds 
at various maturities, you may iteratively find 
zero-coupon interest rates using the bootstrap. 
The produced curve is an exact fit to the original 
market data.

Formally, the bootstrap logic can be written as 
follows. Suppose we have a set of bonds � iP , 1...i N∈  
at with maturities 1...Jτ ∈ . Then the price of each 
bond can be represented as the sum of its 
discounted future streams:
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The system of equations (4) can be solved 
by the iterative method by replacing the found 
zero-coupon yields from the first equations in 
the subsequent equations.

In reality, the set of available bond prices P  is 
limited. An assumption of the form of the yield 
curve is required at the intervals between the 
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maturities of the available securities. We use the 
basic assumption of a piecewise constant form of 
the yield curve, but we can also assume more 
complex dependencies [25].

A bootstrapped yield curve ( )y τ  depends on 
each point of market data and ideally reproduces 
the initial data. Any noise in the source data can 
significantly distort the shape of the curve, and 
gaps in the data will make it less smooth [26]. 
Bootstrap is commonly used in developed liquid 
markets where enough bonds are traded and 
structural market inefficiencies are minimized.

Methods for missing data imputation
We examine two strategies of dealing with 
missing data: simply remove the gaps in 
data and fill gaps. The first option serves as a 
benchmark strategy, as it is most commonly 
found in financial research that deals with 
missing data. The second option is more 
advanced. It is less common in the literature, but 
sometimes it allows to improve the quality of 
model evaluation. We explore how the gap filling 
strategy improves the quality of yield curve 
estimation compared to the gap removal strategy.

We have chosen three methods for filling 
gaps: 1) a simple heuristic method of filling in 
the last value (last observation carried forward); 
2) a Kalman filter that takes into account the 
previous dynamics of observations; 3) an EM-
algorithm that takes into account the aggregate 
dynamics. This selection of methods makes it 
possible to compare how much the complexity 
of missing data imputation method impacts the 
quality of the evaluation of the curve.

The easiest way to fill a gap is to fill it with the 
last value. This method is simple to implement, 
but it uses the strong assumption that in the 
absence of data, a previous observation is the 
best estimate of a missing value.

The Kalman filter is a more advanced 
option for filling gaps. When filling the gaps, 
this method takes into account the historical 
dynamics of a data point. Based on noisy 
observations, the Kalman filter evaluates the 
unobserved state of the system. The system state 
can then be used to estimate the possible values 

for the missed observations. Technical aspects of 
the method are presented in the paper [27].

In contrast to Kalman filter, EM-algorithm 
considers the dynamics of not just one data 
point, but of the entire dataset. It takes into 
account the dynamics of other observations and 
the covariation structure of the data. This is an 
iterative algorithm consisting of two steps. In the 
E-step, the expected value (expectation) of the 
vector of non-observed variables is calculated 
on the basis of the first approximation of the 
model coefficients estimated using available 
information. The M-step solves the problem of 
maximization and is the next approximation of 
the vector of the model parameters. It is then 
used to estimate non-observed values, and the 
process repeats. [28].

Comparison of estimation quality
We compare the quality of the yield curve 
estimation using cross-validation. The idea 
of the method is that all observations are used 
for tests. This is useful when available data sets 
are small. An observation is excluded from the 
training dataset, the model is evaluated without 
this observation, and then the error is calculated 
for the excluded test observation. The procedure 
is performed iteratively for each observation in 
the sample, and the result is then averaged [29].

When calculating cross-validation errors, 
we use only real observations. The imputed 
data is thus only needed for a more accurate 
estimation of the curve. It does not need to be 
taken into account in the calculation of error, 
as the ultimate goal is to improve the quality of 
reproduction of real observations rather than 
recovered observations.

data
We use closing prices of standard FLB with fixed 
coupon in the period from May 2012 to December 
2015 (approximately 1000 observations). We do 
not include amortizing, floating and inflation-
linked FLBs in the sample, as their pricing 
principles differ from standard FLB coupons [30]. 
Prices were obtained from the Finam analytical 
platform.
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More up-to-date data on FLB trades up to 
2022 was also collected and studied. However, the 
percentage of gaps in the data sample is small, so 
they would not be representative for the study. In 
this regard, we are restricted to looking at older 
data.

An alternative could be to generate data 
gaps, but this approach involves an artificial, 
exogenous missing data generating process that 
may distort the conclusions of the study. That 
is why we compromise data speed in return for 
an actual and non-distorted gap structure. This 
method doesn’t reduce the practical value of the 
produced results. They can still be applied to 
other bond markets where data gaps are still a 
problem —  to the corporate debt market, as well 
as to less liquid sovereign —  obligation markets, 
where data gap is still a common phenomenon.

The average share of missing data in the 
collected sample is 10%. There were more missing 
observations in the beginning of the sample 
(around 30% in 2012). The share of gaps has then 
fallen down to 20%. By the end of 2015 there are 
almost no gaps in the sample. A large number of 
gaps are concentrated around weekends and public 
holidays (New Year’s Eve, May Holidays). Gaps 
are distributed relatively randomly by individual 
securities. Long series of gaps are rare. Usually, 
their length does not exceed two to five days. Some 
securities are more “prone” to gaps, but generally 
they don’t stand out much from the sample.

We rearrange the data as follows. From the 
closing prices we calculate coupon yields. Next, 
we fill the gaps in yields using data imputation 
methods described earlier. Then we go back 
from processed returns again to bond prices. The 
yield curve is then calibrated to new price data 
sample. For observations with no gaps, such a 
transition has no effect because yield and price 
are inseparable. As a result, all valid observations 
are preserved, while missed observations are 
recovered.

A transition from price to yield and backwards 
is necessary to take into account the pull-to-
par effect (the convergence of the bond value to 
the nominal as it approaches repayment data). 
In addition, some methods of filling gaps, such 

as EM-algorithm, require normally distributed 
data. Yields distribution is closer to normal than 
distribution of bond prices.

To apply the EM-algorithm, we additionally 
calculate the average arithmetic yield on all 
securities for each day. This is necessary because 
the size of the sample is not fixed. Some securities 
are expired, others, on the contrary, are issued. 
As a result, estimating the covariance between 
the yields of various securities is difficult. This 
issue can be avoided by calculating the covariance 
between yield of a particular bond and an average 
yield, rather than the covariance matrix of yields. 
Of course, this simplification leads to the loss of 
some information. In fact, when filling gaps with 
the EM-algorithm, we only take into account the 
relationship of observation with the overall “level” 
of the yield curve. However, this simplification is 
acceptable, as parallel shifts explain most of the 
yield curve dynamics [31].

ResUlts
On the basis of the methodology described, gaps 
in data on bond trading were filled. A graphical 
comparison of different ways of filling gaps 
in yields and prices is shown on below on the 
example of FBL 25065 (Fig. 1, 2).

When the gaps in returns are filled, the 
results may vary greatly. Filling with the last 
value (shaped dots) looks most inaccurate. It 
creates long, constant sections in the data. 
Filling with the Kalman filter (cross) is slightly 
more effective. Because the model reads from 
previous yield dynamics, the constant areas are 
replaced by sloping ones. When using the EM-
algorithm (plus), the results are quite close to 
expectations. In fact, the average yield dynamics 
of all securities is applied to the yield of a bond 
with missing prices.

As we transition from yields to prices, the 
difference between the methods of filling gaps 
becomes less noticeable. This is due to the 
fact that as the maturity decreases, the bond’s 
sensitivity to the change in yield also decreases, 
and its price tends to par.

For data with filled gaps, we then constructed 
the yield curves using the Nelson-Siegel and 
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bootstrap models and calculated the average 
absolute fitting error with cross-validation. 
By comparing the error values, we counted 
the percentage of days when missing data 
imputation improved the quality of yield curve 
estimation compared to the simple deletion of 
the gaps. Only the days with recorded gaps were 
considered.

The gap filling strategy improves the fitting 
quality of the bootstrapped yield curve compared 

to the simple gap removal strategy (Table). The 
share of the days when data imputation has 
improved quality is approximately 65%. This is 
slightly higher for the EM-algorithm imputation, 
but generally speaking, the differences between the 
imputation methods are insignificant. The quality 
improvement resulting from the filling of gaps is 
statistically significant at a 95% confidence level.

For the Nelson-Siegel parametric model, 
missing data imputation does not significantly 
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Fig. 1. An Example of Processing Yields Gaps for FLB 25065
Source: Author’s calculations.

Fig. 2. An Example of Processing Prices Gaps for FLB 25065
Source: Author’s calculations.
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improve the quality of the curve estimation. 
The share of days when data imputation helped 
improve the quality of the estimation and the 
days when the curve is better to evaluate only on 
the available data are roughly equal.

The difference in the impact of missing data 
imputation on the quality of the yield curve 
estimation using the Nelson-Siegel model 
and bootstrapping can be explained by the 
different sensitivity of the models to market 
data. The Nelson-Siegel model has only 4 
parameters. They can be estimated quite well 
from available observations. Adding two or 

three more recovered points to the 16 real 
points will not have a significant impact on the 
outcome. Bootstrap, on the contrary, depends 
on each point of market data. Adding even 
one observation makes the yield curve more 
smooth.

An example of the improvement in the 
quality of the estimation of the yield curve is 
shown in Fig. 3–4 based on the trade data for 
9 June 2012. It’s a pre-holiday day, so trading 
activity was lower and there were more gaps in 
the data. The yield curve was first calibrated only 
to real observations and then to a combination 

Table
Percentage of the Days when Processing Data Gaps Provides a Better Yield Curve Fit than Simple 

Removal Processing of Gaps

bootstrapping Nelson-siegel Mode

Removal of gaps Missing data 
imputation Removal of gaps Missing data 

imputation

Last value 35% 65% 52% 48%

Kalman filter 34% 66% 59% 41%

EM-Algorithm 31% 69% 49% 51%

Source: Author’s calculations.
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of real data and data with filled gaps. Both for 
the Nelson-Siegel model (Fig. 3), and for the 
bootstrap (Fig. 4) missing data imputation 
allowed to describe more accurately the term 
structure of interest rates, especially at the 
far end. The average absolute error on cross-
validation was significantly reduced (the error 
values are shown in figures).

CoNClUsioN
A comparison of different methods for missing 
market data imputation was carried out. The 
results are illustrated by an example of yield 
curve estimation in the Russian bond market. 
We have shown that ignoring gaps can lead to 
distorted estimates of the yield curve model. 
On the contrary, missing data imputation could 
improve the quality of estimating the yield curve 
compared to removing missed observations from 
the sample.

The effect of filling gaps in the data on the 
quality of estimation of the yield curve depends 
on the selected curve model. For the Nelson-
Siegel parametric model, the positive effect 
of filling gaps is minimal. For bootstrapping, 
a statistically significant improvement in 

evaluation quality is recorded when filling gaps 
in the data. The observed differences are related 
to the degree of sensitivity of yield curve models 
to market data. The Nelson-Siegel parametric 
model can be efficiently calibrated even when 
only a small number of data points is available. 
For bootstrap, however, every additional 
observation is important.

In practice, when selecting an approach 
for missing data pre-processing, we propose 
evaluating the financial model’s sensitivity 
to market data. It will be useful to pre-fill 
gaps in data if data-sensitive models are used. 
The specific method of dealing with gaps in 
relation to the task of yield curve estimation is 
less significant. Both simple last observation 
carried forward method, and more sophisticated 
methods of filling gaps based on the Kalman 
filter or EM-algorithm give a similar result. If it is 
not possible to fully process data gaps, then it is 
necessary to use simpler and less data-sensitive 
models.

The paper findings can be useful for yield 
curve estimation in low-liquidity markets and for 
other financial studies that deal with incomplete 
market data.

Fig. 4. bootstrapped Zero-Coupon Yield Curve for Russian Flb Constructed Using only Real data and 
Using both Real and Gaps data as of June 9, 2022
Source: Author’s calculations.
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