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iNtRodUCtioN
For any company, it’s often essential to develop adequate 
strategies for efficient portfolio management to deal with 
probable risks. To do this, it is often sought to develop 
representative mathematical models, to be used as tools 
for analysis, forecasting and simulation for decision 
support. The choice of model is very important and as 
we know, Gaussian processes and variables have been 
studied for a long time and their usefulness in stochastic 
and statistical modelling is well accepted. However, they 
don’t allow for large fluctuations and may sometimes be 
inadequate for modelling high variability. That’s why it’s 
important to focus on other families of laws and processes, 
such as stable random variables and processes, which 
naturally appear as alternative modeling tools. In recent 
years, the theory of stable variables has seen many exciting 
developments, due to the fact that it is a very rich class of 
probability laws able to represent different asymmetries, 
and heavy tails, so modelling complex phenomena.

α-stable distributions are a class of heavy-tailed 
distributions, this class was characterized by [1], in his 
paper the sum of independent and identically distributed 
variables. This class has a great importance in the theory 
of extreme values, because stable distributions can be 

characterized from the Generalized Central Limit Theorem 
given by Gnedenko and Kolmogorov (1954) [2] and 
indicates that if the condition of finite variance is not 
respected, the only possible limit law of the sum of n 
random variables (iid) is a Stable law. For all these reasons, 
we have chosen to focus on stable distribution for fitting 
claims amounts of car insurance.

heaVY-tails distRibUtioN
In this section, we present briefly the notion of heavy-
tailed distribution and various classes of such 
distributions. It is not easy to define heavy tails 
distribution precisely, but several definitions have been 
associated with such distributions according to 
classification criteria. The easiest characterization is 
based on the comparison with the normal law [3]. The 
distribution of a r.v X  with mean м  and variance 2σ  
and is said to have a heavy tail if:

                                  

( )4

4

м
3.

E X −  >
σ

  (1)

This is equivalent to saying that a distribution is heavy-
tailed if and only if its kurtosis (the 4th central moment) is 
higher than the normal distribution (for which it’s equal 
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to 3), this indicates high peaks and fat tails (leptokurtic). 
Kurtosis less than three (<3) indicates lower peaks. The 
criterion, given by equation (1) is very general and can’t 
be applied if the 4th moment of a random variable doesn’t 
exist.

Unfortunately, it is not easy to define heavy tails 
precisely, and there is no criterion to classify all 
distributions relative to the right tail. We present in this 
section five classes of heavy-tailed distributions, borrowed 
from [4]:

•  Distributions with no exponential moments (E);
•  Subexponential distributions (D);
•  Distributions with regular variations (C);
•  Distributions with Pareto behaviour (B);

•  α -Stable distributions with 2α <  (A).
For these classes we have the following relationships:

A B C D E⊂ ⊂ ⊂ ⊂

These classes of distributions are nested, the broadest 
class E encompasses all distributions with ( )XE e = ∞ . 
All distributions of class E are heavy-tailed with respect 
to the normal distribution (the tail probability 

( ) ( )1P X x F x> = −  of the normal distribution declines 
faster than exponentially).

ALPHA-stable distRibUtioN
The class of stable distributions is defined by means 
of their characteristic functions. With very few 
exceptions, no closed-form expressions are known for 
their densities and cumulative distribution functions, 
see [5] or [6, 7].

Definition: A random variable X  is said to have a 
stable distribution, ( ), ,X Sα∈ β µ γ  if its characteristic 
function ( ) itX

X t Eeφ =  has the following form:

( ) ( ) ( )( ){ }exp � 1 , ,��X t i t t i sign t W t t IR
ααφ = µ − γ − β α ∈ , (2)

where
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� ������������� ���������� 1

2,
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tan if
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The stable laws are described by four parameters:
•  Index of stability �0 2< α ≤ : determines the rate at 

which the tails of the distribution taper off. When � 2α = , 
the Gaussian distribution results, when � 2α < , the 
variance is infinite and the tails are asymptotically 
equivalent to a Pareto.

•  Skewness parameter [ ]1,1�β ∈ − : when β  is positive 
(negative), the distribution is skewed to the right (left), 
when 0β = , the distribution is symmetric about the 
location parameter µ . As α  approach 2, β  loses its 
effect and the distribution approaches the Gaussian 
distribution regardless of β .

•  Location parameter IRµ ∈ : determines the shift 
of the mode (the peak) of the density.

•  Scale parameter 0γ > : determines the width, 
when 1γ =  and 0µ =  the distribution is called standard 
stable.

statistiCal tests  
FoR stable laW

In this section, we describe two graphics tests that may 
allow us to know if we are in the presence of an infinite 
variance law or not [8, 9]. For this, we suppose that we 
have a sequence of observations ( )1, , nx x… .

Test 1:
This first test is the simplest and most used, it’s 

decomposed into two parts:
•  Calculate the variance for different values of n :

  
( )22

1

.
1

1

n

n i
i

S x x
n =

= −
− ∑   (3)

•  Draw the graph ( )2, nn S
Distribution has finite variance, then there exists a 

finite constant c, such as:

( )22

1

1

1

n

n i
i

S x x c
n =

= − →
− ∑   as n → ∞  Almost surely,  

 
and vice versa.

When n  increases and when the variance is finite, the 
plot must converge (see Fig. 2 for 2α = ); On the contrary, 
if we are in the presence of a law with infinite variance, 
the plot diverges, and does not especially grow 
exponentially, as some received ideas suggest.

Test 2:
This second test is based on the fact that stable 

distributions have asymptotically the same behaviour 
as a Pareto distribution:
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( ) ( )�lim�� ��

t
t P X t Cα

→∞
> = γ α   (4)

So in +∞  we have ( )log

log

d P X t

d t

>  

( )log

log

d IP X t

d t

> ( )log

log

d IP X t

d t

>
 is equivalent to α  

Also here we have two steps:

•  Fix t  and calculate ( )
1

1
1

i

n

x t
i

g t log
n >

=

 
=   ∑

 
•  Draw the graph ( )( )log ,�t g t  and see if the slope  

is finite from some value of t .

 
Fig. 1. histogram of ( )� 1,0,1Sα

Source: Compiled by the authors.

Fig. 2. test 1 for ( )1,0,1Sα  r.v
Source: Compiled by the authors.
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EXAMPLES  
OF GRAPHICS TESTS

For understanding the previous tests, we simulated 
by Chambers, Mallows and stuck methods [10, 11] 
many sequences of α-stable r.v for different values of 

�α : 0.7, 1.3, 1.7 and 2α = , with 1β = , 0µ =  and 
1γ = . The r. v. is ( )1,�0,1�Sα , for this, the distribution is 

skewed to the right. In first, we present the histogram 
of stable distribution for different values of α  in 
Fig. 1.

As shown in Fig. 2, for a population with finite 
variance (like Gaussian distribution for 2α = ), the 
partial variance soon settles down close to the 
population variance (converges to a constant). For a 
population with an infinite variance, we see jumps up 
in the partial variance followed by slow declines until 
the next very large value appears in the sample. When 
n  increases, the series of empirical variance not only 
diverges, but also oscillates with a high frequency 
for  2< . But when 2α =  the series of variances no 
longer varies and becomes stable, and in Fig. 3, only 
the case 2α =  gives a finite slope (the slope is a vertical 
line when n → ∞ ).

APPLICATION  
iN NoN-liFe iNsURaNCe

standard Mathematical Model
In the most general case a risk process ( )R t  
representing the behaviour of an insurance company is 
described by the following equation:

                         ( ) ( ).R t u ct S t= + −   (5)

Where u is the initial capital, c is the constant premium 
rate and ( )S t  is the claim process defined by:

                            
( )

( )

1

N t

i
i

S t X
=

= ∑   (6)

{ } 1i i
X

≥
Sequence of independent, positive, iden  tically 

distributed r.v, which represent claim severities.

tN : Number of claims in (0, t], we assume that tX  
and tN  are independent.

This model is known as the classical risk process or 
Cramér-Lundberg model [12], where ( )S t  is a compound 
Poisson.

As we can see, the aggregate claim amount ( )S t  is 
a random sum of random variables. And for good risk 
management of the insurance company, it needed to 
have good modelling of this sum (claim process), which 
depends essentially of claims amounts and their 
frequencies. To do this, we must examine sequences of 
real data to have the best estimate of the claim amount 
distribution.

statistical analysis  
of Real data

For a good modelling of the risk, it’s important to know 
the distribution of claim amounts. For this, we propose 
to study the daily real data from an insurance company 
over a period of one year (2017 and 2018) using Matlab 
R 2021a. Fig. 4 and Fig. 5 give us the behaviours of claims 
amounts.
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Fig. 3. test 2 of ( )1,0,1Sα  r.v for different Value of α
Source: Compiled by the authors.
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It’s clear that there is considerable jump in the claims 
amount, especially in 2018.

In Fig. 6, we can see that we have the asymmetric 
leptokurtic features, that is, the claim distribution is 
skewed to the right, and has a higher peak and heavier 
tail than those of the normal distribution.

Histograms of our data are similar to the histogram 
of α-stable distribution for 2α <  (see Fig. 1), which is 
skewed right. So, the α-stable distribution can be seen 
as a useful tool to capture the asymmetric leptokurtic 
features of the claim amount, which is confirmed in Fig. 7 
and Fig. 8 corresponding to the results of tests 1 and 2 for 
real data.

Through Fig. 7 and Fig. 8, we can see that the behavior 
of our data sample is closer to the stable law. The empirical 
variance of all our data sets (Fig. 7) oscillates with a high 
frequency, and the slope of our data sets is not finite 
(Fig. 8).

test aNd diaGNostiCs
�α -Stable Parameter’s Estimation

There are different methods for estimation of the stable 
distribution parameters; we will only define the two 
methods used in this work.

Quantile Method:
McCulloch [13] generalized the sample quantile 
methods for symmetric stable laws ( )0,� 0β = µ =  with 

1α >  of Fama and Roll (1971) [14] and provided 
consistent estimators of all four stable parameters 
(with the restriction 0.6α > . He uses five sample 
quantiles (with q  = 0.05, 0.25, 0.5, 0.75, 0.95) and 
matches the observed quantile spread with the exact 
quantile spread in stable distributions, for more details 
see [15] or [16].

empirical Characteristic Function Method:
Koutrouvelis [17] presented an accurate regression-
type method which starts with an initial estimate of 

Fig. 4. Claims amount
Source: Compiled by the authors.

Fig. 5. increment of Claims amount ( )1+ −i iX X
Source: Compiled by the authors.
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the parameters and proceeds iteratively until some 
prespecified convergence criterion is satisfied. The 
regression method is based on empirical Characteristic 
Function [16].

For our estimation, we used stbl code of M. Veillette 
[18]. stbl is a free MATLAB library for working with alpha 
stable distributions. The results obtained for 2018 are 
summarized in the Table 1.

Fig. 6. histogram of Real data
Source: Compiled by the authors.

Fig. 7. test 1 for Real data
Source: Compiled by the authors.
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Fig. 8. test 2 for Real data
Source: Compiled by the authors.
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Diagnostic with Kernel Densities and Cumulative 
Distribution Function:

First, we use the diagnostic with Kernel densities 
to verify whether or not the stable fit describes the 
claim’s amount data well. This consists in making a 
smoothed density plot of the real data, then comparing 
it to the density plots of a stable law with the parameters 
estimated previously. If there are clearly multiple 
gaps in the media, the data cannot come from a stable 
distribution.

In Fig. 9 we can observe that, the claim’s amount 
is distributed similarly to α -stable distribution and 
in Fig. 10, how give us, a comparison among the 
empirical cumulative distribution function CDF built 
from claim’s amount data set and α -stable 

distribution CDF, we can show clearly that there are 
almost identical.

For confirmation of our hypothesis, we used the 
Kolmogorov test, how is based on the maximum distance 
between these curves (ECDF and CDF).

Kolmogorov test
This test is used as a test of goodness of fit. It 
compares the empirical cumulative distribution 
function ( )nF x for a variable with a CDF of specified 
distribution ( )F x .

( ) ( )0 :� nH F x F x=  Against all of the possible 
alternative hypotheses

( ) ( )1 :� .nH F x F x≠

Fig. 9. Kernel density estimation
Source: Compiled by the authors.

Table 1
Parameter’s Estimation of Real Data of 2018

estimation methods  α  
β

 
γ

 µ

Koutrouvelis 1.0571 1 5.7990e+03 7.2869e+04

McCulloch 0.9563 0.9836 4.9322e+03 -6.1482e+04

Source: Compiled by the authors.
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The null hypothesis assumes no difference between 
the observed and theoretical distribution and the value 
of test statistic ‘ KD ’ is calculated as:

( ) ( ){ }x IRSup � .k nD F x F x∈= −

0�H is rejected if ( )KD D nα> . Where ( )D nα  is the 
critical values, of the maximum absolute difference 
between sample ( )nF x  and ( )F x .

We recall that there is no formula for the stable law 
distribution function, so we have estimated by using 
Stblcdf code of Veillette M [18].

We have ( )� KD D nα< , so we accept 0��H . Conclusion, 
the claim’s amount can be well captured by an α-stable 
distribution (Table 2).

CoNClUsioNs
In this paper, we have reviewed the different 
technical diagnostics to verify and show that 
some data with heavy tails are well described by 
stable distributions, because they can model large 
fluctuations. We have shown through the empirical 
study and the diagnostics with Kernel densities 
that the stable distribution gives a perfect fit of the 
claim’s amounts of car insurance; this result is very 
important and can help an insurer and an actuary to 
develop adequate strategies for risk management. In 
our future study, we will be interested by minimizing 
the ruin probability, as well as the estimation of the 
Lundberg coefficient for stable distributions of car 
claim’s amount.

Fig. 10. Comparison between eCdF and stable CdF
Source: Compiled by the authors.

 

Table 2
the Results of Kolmogorov test

Level of significance α
Level of significance α 5% 1%

Critical values ( )D nα
0.140 0.167

Statistic of
Kolmogorov kD

Koutrouvelis 0.031

Mc-Culoche 0.077

Source: Compiled by the authors.

A. Laouar, K. Boukhetala, R. Sabre



FINANCE: THEORY AND PRACTICE   Vol. 28,  No. 5’2024  FINANCETP.FA.Ru  154

ReFeReNCes
1. Lévy P. Calcul des probabilités. Paris: Gauthier-Villars; 1925. 368 p.
2. Brookes B. C. Limit distributions for sums of independent random variables. By B. V. Gnedenko and 

A. N. Kolmogorov. Translated by K. L. Chung. Pp. ix, 264. $ 7.50. 1954. (Addison-Wesley, Cambridge, 
Mass.). The Mathematical Gazette. 1955;39(330):342–343. DOI: 10.2307/3608621

3. Werner T., Upper C. Time variation in the tail behaviour of bund futures returns. European Central 
Bank. Working Paper Series. 2002;(199). URL: https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp199.
pdf (accessed on 15.06.2021).

4. Bamberg G., Dorfleitner G. Fat tails and traditional capital market theory. Institut für Statistik und 
Mathematische Wirtschaftstheorie, Universität Augsburg. 2001;(177). URL: https://www.yumpu.com/
en/document/read/36398518/fat-tails-and-traditional-capital-market-theory-gilles-daniel

5. Zolotarev V. One-dimensional stable distributions. Providence, RI: American Mathematical Society; 
1986. 284 p. (Translations of Mathematical Monographs. Vol. 65). DOI: 10.1090/mmono/065

6. Nolan J. P. Univariate stable distributions: Models for heavy tailed data. Cham: Springer-Verlag; 2020. 
333 p. (Springer Series in Operations Research and Financial Engineering). DOI: 10.1007/978–3–030–
52915–4

7. Nolan J. P. Maximum likelihood estimation and diagnostics for stable distributions. In: Barndorff-
Nielsen O.E., Resnick S. I., Mikosch T., eds. Lévy processes. Boston, MA: Birkhäuser; 2001:379–400. DOI: 
10.1007/978–1–4612–0197–7_17

8. Rolski T., Schmidli H., Schmidt V., Teugels J. Stochastic processes for insurance and finance. Hoboken, 
NJ: John Wiley & Sons, Inc.; 1999. 680 p. (Wiley Series in Probability and Statistics).

9. d’Estampes L. Traitement statistique des processus alpha-stables: mesures de dépendance 
et identification des ar stables. Test séquentiels tronqués. Thèse. Toulouse: Institut national 
polytechnique de Toulouse; 2003. 143 p. URL: https://tel.archives-ouvertes.fr/tel-00005216 (accessed 
on 15.06.2021).

10. Chambers J. M., Mallows C. L., Stuck B. W. A method for simulating stable random variables. Journal 
of the American Statistical Association. 1976;71(354):340–344. DOI: 10.1080/01621459.1976.10480344

11. Janicki A., Weron A. Simulation and chaotic behavior of alpha-stable stochastic processes. New York, 
NY: Marcel Dekker, Inc.; 1994 376 p. (Monographs and Textbooks in Pure and Applied Mathematics. 
Vol. 178).

12. Cramér H. Collective risk theory: A survey of the theory from the point of view of the theory of 
stochastic processes. Stockholm: Nordiska bokhandeln; 1955. 92 p.

13. McCulloch J. H. Simple consistent estimators of stable distribution parameters. Communications in 
Statistics —  Simulation and Computation. 1986;15(4):1109–1136. DOI: 10.1080/03610918608812563

14. Fama E. F., Roll R. Parameter estimates for symmetric stable distributions. Journal of the American 
Statistical Association. 1971;66(334):331–338. DOI: 10.1080/01621459.1971.10482264

15. Reiss R.-D., Thomas M. Statistical analysis of extreme values: With applications to insurance, finance, 
hydrology and other fields. 3rd ed. Basel: Birkhäuser; 2007. 511 p.

16. Čížek P., Härdle W. K., Weron R., eds. Statistical tools for finance and insurance. Berlin, Heidelberg: 
Springer-Verlag; 2011. 420 p. DOI: 10.1007/978–3–642–18062–0

17. Koutrouvelis I. A. Regression-type estimation of the parameters of stable laws. Journal of the American 
Statistical Association. 1980;75(372):918–928. DOI: 10.1080/01621459.1980.10477573

18. Veillette M. Alpha-stable distributions for MATLAB. URL: http://math.bu.edu/people/mveillet/html/
alphastablepub.html (accessed on 16.06.2021).

MatheMatiCal Methods iN eCoNoMiCs



FINANCE: THEORY AND PRACTICE   Vol. 28,  No. 5’2024  FINANCETP.FA.Ru 155

aboUt the aUthoRs

Amel Laouar —  PhD student in Pure and Applied Mathematics, Research Associate at 
Laboratory of stochastic modelization and data mining, University of science and 
technology Houari Boumedienne (USTHB), Algiers, Algeria
https://orcid.org/0000-0001-9503-6230
Corresponding Author:
amel.laouar@gmail.com

Kamal Boukhetala —  PhD in Mathematics, Prof., Project manager and head of the 
actuarial risk modeling-simulation team at Laboratory of Stochastic modelization and 
data mining, University of science and technology Houari Boumedienne (USTHB), 
Algiers, Algeria
https://orcid.org/0000-0003-3277-402X

Rachid Sabre —  PhD in Mathematics, National Higher Institute of Agronomic, Food 
and Environmental Sciences, AgroSup, Dijon, France
https://orcid.org/0000-0002-4565-7757
rachid.sabre@agrosupdijon.fr
kboukhetala@usthb.dz

Author’s declared contribution:
A. Laouar —  defi ned the research problem, objectives of the study and developed the conceptual 
framework of the study, data curation, methodology, formal analysis, writing, review, and editing.
K. Boukhetala —  was involved in writing (review and editing), supervision, assisted with formal 
analysis.
R. Sabre —  assisted with formal analysis.

Confl icts of Interest Statement: The authors have no confl icts of interest to declare.

The article was submitted on 12.02.2023; revised on 10.03.2023 and accepted for publication on 
28.03.2023.
The authors read and approved the fi nal version of the manuscript.

A. Laouar, K. Boukhetala, R. Sabre




