ORIGINAL PAPER

JEL C51, C53, L82, E22, G11

L
DOI: 10.26794/2587-5671-2025-29-6-243-268
UDC 338.467,339.13,330.131.5(045)

Forecasting the Financial Efficiency of Russian Cinema Using a Multifactor Ensemble Machine Learning Model Trained on Historical Data

A.V. Dozhdikov

Institute of Socio-Political Studies of the Russian Academy of Sciences, Moscow, Russian Federation

ABSTRACT

The object of the study is data on the distribution of Russian cinema films from July 2022 to September 2023. Specifically, it analyzes 185 films that were released during this period. The research tool consists of 26 and 146-factor machine learning models that have been pre-trained based on previous periods (from 2004 to July 2022, with 1,500 films). The purpose of the study is to demonstrate that machine learning models, trained on historical data, can accurately predict future data, which is especially important for funding programs aimed at developing national cinema in the Russian Federation and attracting private investment, in light of the departure of foreign film distributors from the film market. The study used **methods** to evaluate film projects based on their historical profitability using rental indicators and the characteristics of the creative teams involved in producing them. The emphasis is on ensemble models - AdaBoost, Bagging, ExtraTrees, GradientBoosting, RandomForest, Stacking, Voting, XGBoost, CatBoost. The novelty of this research lies in introducing of new sources into the scientific community and the potential for practical application of the developed methods for both public and private investors to evaluate film projects prior to the start of the production cycle. Conclusions: Conclusions: Based on the analysis of the quality metrics (accuracy, ROC AUC, and others) for a sample of 185 newly released films (through September 2023), we found that the drop in these metrics was not significant. This suggests that it is possible to use pre-trained models based on historical data to make predictions about fees and other rental outcomes. By analyzing the past work of the project director, screenwriters, cameramen, producers, artists, editor, composer and key actors of the project, estimated distribution data, and the amount of project funding, it is possible to make an accurate prediction about the success of a film. This will allow you to see the total fees, payback period, number of views, and viewer rating.

Keywords: financial efficiency; film box office forecast; box office data; national cinema; machine learning; ensemble models; classification; regression; CatBoost; XGBoost; government policy in cinema; export of film content

For citation: Dozhdikov A.V. Forecasting the financial efficiency of Russian cinema using a multifactor ensemble machine learning model trained on historical data. Finance: Theory and Practice. 2025;29(6):243-268. DOI: 10.26794/2587-5671-2025-29-6-243-268

© Dozhdikov A.V., 2025

INTRODUCTION

At the stage of development (pre-production), investors evaluate from several dozen scripts to several hundred and thousands in large studios, select key actors, form creative and film crews, and determine the budget. It is at this stage that it is advisable to consider various scenarios and combinations of creative and film crews before investing a large amount of money in the production of not even one film, but a carefully formed and calculated "portfolio" of film projects. An accurate income forecast at this early stage significantly reduces investment risk [1]. The huge initial investments associated with the film industry, both public and private, require investments to be based on reliable and reproducible forecasting methods [2] despite the fact that film production itself is riddled with subjectivity and uncertainty all over the world: every decision made can affect both the quality of the project and the financial side of the rental [3].

An accurate prediction of the success of the film is possible using the analysis of historical and current data. The success of a film project is determined by the combined contribution of the actors, director, composer, producer and other members of the creative team. Access to the biographical data of these specialists can be obtained from open sources such as the Internet Movie Database (IMDb) [4]. Rotten Tomatoes, as well as from social networks, which provide information about subscribers of these artists. In addition, you can view data on the number of views of projects in various databases and analytical materials, including trailers and other relevant materials [5].

It is possible to predict not only quantitative data on financial success and the number of views [6], but also the results of the Oscar Film Awards [7] and other "qualitative" events.

Predicting film distribution and box office receipts using data mining is developed in Hollywood and Indian Bollywood [8], as well as in Nigerian Nollywood [9]. The Asian trend is the active use of machine learning and neural networks. Most scientific publications on this topic are published in mainland China. Korea. Taiwan, India, Indonesia, Sri Lanka and other Asian countries.

Box office forecasting is usually carried out using machine learning algorithms [10], including the use of big data before the direct release of projects into wide distribution, because rental results directly affect investment decisions in the stock market, the development of advertising promotion strategies, and the planning of film screenings by cinema chains [11]. Nevertheless, it is also possible to predict the results at an early stage of production (pre-production), when filming of the project has not yet begun. Forecasting the profitability of films at an early stage of production can be useful for making decisions about investing [12], issuing stocks and bonds, and using other financial instruments.

In Russia, the industry of forecasting national film distribution is less developed than, for example, in China. However, the predictability of Russian cinema proved in [13], the presence of clear trends in payback, viewings, and audience ratings, depending on the characteristics and creative composition of film production teams, will make it possible to more successfully implement state policy in the field of art, culture, and creative industries development. All forecasts and conclusions can be made before the start of the most expensive filming process, and the basic data on the factors of "success", including the duration of the film project, genre orientation, age rating and other elements have already been determined by the author in his previous scientific work [14].

RESEARCH METHODS AND DATA SOURCES

Film distribution forecasting has gone through a long stage from statistical modeling in the early 2000s to machine learning methods in the second half of the 2010s [15]. As already noted, an accurate forecast of gross box office receipts is of great benefit for investment and management of the film industry, respectively, the use of different forecasting methods and a set of economic factors will allow to identify the most productive combinations [16].

Most studies use multifactorial or multimodal forecasting of movie ratings based on open data [17] with a number of factors ranging from several to several hundred. Both data from the local film market, such as Taiwan [18], and global databases such as IMDB [19] are used.

Both the rental data itself and its history, as well as related ones, such as search queries and trends, can be studied [20], and correlation analysis of big network data and movie time series data can be performed [21]. There are also textual techniques

that include the use of language models to analyze the text of user comments on a future project, so it is possible to analyze the frequency of words in reviews [22] and search for combinations of them that predict success.

In this paper, the object of research is limited. It is the rental historical data that is studied, the success/ failure of the film and a more complex classification are predicted, the number of views, fees, payback (fees/ budget ratio) and audience rating.

As a rule, researchers compare different machine learning methods for efficiency and accuracy [23], since it is impossible to predict the results of a particular method in advance without a detailed analysis of the initial data set.

Predicting the success of a film using machine learning methods requires the use of various ways to increase accuracy [24]. In the present study, this issue is solved by adjusting machine learning hyper parameters, as well as using synthetic data to balance predicted classes.

As a rule, the study begins with linear regression, logistic regression, or the "support vector machine" [25]. This intermediate stage was presented in a previous scientific paper [14]. It should be noted that a similar approach was used in the analysis of the Turkish national cinema, including multiple regression analysis, ridge regression and lasso regression, tree-like methods such as "random forest". SVM and KNN, and the best results were predictably obtained based on the "random forest" method [26].

First of all, the researcher should be interested in the so-called "ensemble methods", which, when properly configured, give higher classification accuracy, allowing the use of multifactorial models such as XGBoost. LightGBM, and CatBoost, which were used by colleagues from China when analyzing film distribution taking into account data on the COVID-19 pandemic [27]. Ensemble methods based on decision trees are more efficient than methods using algorithms similar to k–NN [28]. Researchers from Korea [29] predict that stacking will become an important tool. This method combines all forecasting algorithms into one large meta-model.

The original dataset consists of 1685 entries about national films, starting with the film "72 meters" (ID_kinopoisk = 70952. release date — 12.02.2004) through "Concert canceled" (ID kinopoisk = 5325618. release

date — 07.09.2023). The data is collected by the author from open sources. The dataset was divided into 2 parts — 1.500 films for training and testing machine learning models and a control and validation dataset for 185 films in chronological order of release. Machine learning models did not have access to the latest dataset during the training period. The first dataset was divided into training and training samples in a 70/30 ratio with fixed separation parameters (random state = 42 for train_test_split). Categorical variables (genres) were encoded by LabelEncoder, and the gaps were filled in with median values.

Approximately 30% of Russian films that are released at the box office do not have open budgets. This significantly affects the accuracy of the research and distorts the results of regression models.

The hypothesis of the study is related to the fact that models trained and tested on data from previous periods (with a random distribution of projects for test and training samples) will show sufficiently high metrics and quality indicators even if a control dataset is used from these new projects in chronological order within a narrow time frame, taking into account objective changes in the rental structure, caused by the departure of foreign film distributors. Thus, pretrained models will work in obviously worse conditions in terms of changing market factors and the "quality" of the data. If the decrease in quality metrics on the control dataset is insignificant compared to the test data, then the main thesis of the study will be proved. Multifactor models trained on historical data from previous periods are effective. In practice, by training the model on data from 2004–2024, we will be able to accurately predict the fate of all national projects in 2025, 2026, and other time periods.

PRELIMINARY RESULTS OF THE STUDY

For the pilot approach, a simplified version was used, a 26-factor model that included the following data: the week and month of the film's release, the number of screens, as well as items such as the film's budget (in millions of rubles), the film's age rating from 0+ to 18+, the total duration of the film in minutes, and the average fee/budget ratio by genre, average viewership rating of Kinopoisk by genre, average fees by genre, average number of views for genre, fees/budget ratio for project subgenre, average viewer rating for project subgenre, average fees for project subgenre, average

views (number) for a subgenre of a project, average fees/budget ratio for a director's projects, average director's rating on Kinopoisk, average fees for a given director's projects, average views of a director's films, average fees/budget ratio for a screenwriter, average audience rating for a screenwriter, average fees for a screenwriter's projects, average number of screenwriter's project views, fees/budget ratio of the second screenwriter, average viewership rating of the second screenwriter, average number of fees of the second screenwriter's projects, the average number of views of the second scriptwriter's projects. Thus, the pilot dataset is limited to the general rental data and historical data of directors and screenwriters (in the case of novice directors and screenwriters. median values were used to prevent their discrimination).

As a rule, a binary classification can be used for this type of task: the project did not pay off at the box office, collected less than 2 of its budgets with class — 0, and the project paid off at the box office by collecting 2 or more of its budgets — 1. However, it is possible to predict a more complex project class with a slight loss of accuracy, for example: 0 — failed at the box office, 1 — did not pay off, 2 — paid off, 3 — made a profit of over 100% of the production budget. At the next stage of the regression, fees (box), views (views), fees/budget ratio (box_buget) and viewer rating (Kinopoisk_R) will be determined.

As a test, several simple ensemble machine learning models were used: AdaBoostClassifier. BaggingClassifier. ExtraTreesClassifier. GradientBoostingClassifier. RandomForestClassifier. StackingClassifier. VotingClassifier. HistGradientBoostingClassifier. For the four-class classification, the HistGradientBoostingClassifier model showed the best results in terms of accuracy 1 = 0.8878 and ROC_AUC score 2 = 0.9611. With hyper parameters selected by the GridSearchCV method (learning_rate = 0.1.

 $^{\rm 1}$ Accuracy — the number of correctly predicted classification results to the total number of predicted results, ranges from 0 to 1.

 $max_depth = 4$. $max_iter = 80$), accuracy = 0.8918 and ROC_AUC score = 0.9653 were obtained. For more information, see *Fig. 1*.

Following the Chinese researchers, we note that XGBoosts and similar models are effective ensemble algorithms for solving this class of problems [30].

When translating class labels in the one-vs-all format. ROC_AUC scores were obtained for each class (*Fig. 2*).

Using the 26-factor model, we will determine the quantitative indicator. the audience rating of Kinopoisk (a dimensionless coefficient). Let's go through several variants of machine learning models: AdaBoostRegressor. HistGradientBoostingRegressor. BaggingRegressor. ExtraTreesRegressor. GradientBoostingRegressor. RandomForestRegressor. CatBoostRegressor. RandomForestRegressor. CatBoostRegressor. As estimated metrics for each model, we use the standard set of MSE (Mean Squared Error) — the mean squared error, R 2 (R-squared) — the coefficient of determination, which evaluates the predictive ability of the model, the proportion of explained variance relative to the total variance, and MAE — (Mean Absolute Error) — the average absolute error (*Table*).

The best results in this case were shown by the ExtraTreesRegressor ensemble model with selected hyperparameters (max_depth = 10. min_samples_split = 10. n_estimators = 250), its indicators were improved to MSE = 0.2356. MAE = 0.3010. R 2 = 0.8492). Thus, even a simple 26-factor model can provide quantitative predictions regarding viewership ratings.

In this paper, taking into account volume limitations, only general data is provided on the developed 26-factor and 146-factor regression models that predict the absolute values of fees, number of views, payback and viewer rating.

MULTIFACTORIAL (COMPLETE) CLASSIFICATION MODEL

To test the hypothesis, we used a more complex predictive model that took into account both rental data from previous periods and an expanded list of members of the creative team. 146 is a parametric model that includes the following indicators: the week and month of the film's release, the number of rental screens. the budget of the film (where known), age rating, duration, genres (up to 5 titles), historical data on the project director, screenwriters, cameraman,

² The ROC curve (Receiver Operating Characteristic or Receiver Operating Characteristic) is a graph illustrating the performance of a classification model at all possible classification thresholds. The AUC (Area Under the ROC Curve) indicator is a measure that allows you to summarize the performance of a model with a single number by measuring the area under the ROC curve. The AUC ranges from 0 to 1, where a higher AUC value indicates higher model performance. An indicator of 0.5 corresponds to "random fortune telling".

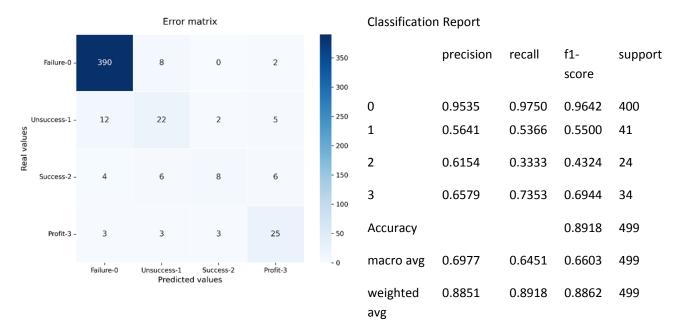


Fig. 1. Error Matrix and Classification Report of the 26-Factor Model

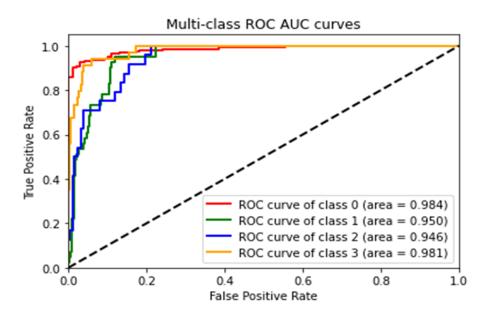


Fig. 2. ROC_AUC_Score Curve for a Four-Class 26-Factor Model

Source: Compiled by the author.

producers of the project, artist, editor, composer, main to the actors of the project. The list of historical data included average historical data on rental screens, budgets, fees, views. Kinopoisk rating, IMDb (if available), relative indicators — fees per screen, screen views, budget fees.

To prove the original statement, the total dataset of 1.685 films is divided into 3 parts. The machine

learning model is being trained and tested on 1.500 records (the records in the samples are randomly distributed), and the generalizing ability of the model is being tested on 185, which are already arranged in chronological order from the moment of release in mid-2022 to September 2023.

The problem of class imbalance is already relevant for the two-class classification: the number of films

Table

Characteristics of Several Predictive Ensemble Regression Models for Kinopoisk Ratings

No.	Machine learning model	MSE	R 2	MAE
1	AdaBoostRegressor	0.385185	0.753436	0.457239
2	BaggingRegressor	0.283048	0.818815	0.332489
3	ExtraTreesRegressor	0.238982	0.847023	0.301738
4	GradientBoostingRegressor	0.270861	0.826616	0.338732
5	RandomForestRegressor	0.255361	0.836538	0.306668
6	HistGradientBoostingRegressor	0.294991	0.811170	0.351616
7	CatBoostRegressor	0.261589	0.832552	0.337352

Source: Compiled by the author.

that were successful at the box office (class = 1) is an order of magnitude less than unsuccessful (class = 0). Therefore, it is advisable to use synthetic data using the balanced-learn library. Thus, the total number of records from the main dataset of 1500 becomes 2670. The sample is divided into training and test samples in a ratio of 70 to 30 using train_test_split. By analogy with the 26-factor model, a machine learning algorithm has been selected that provides the best quality metrics in this configuration. It turned out to be a domestic development from the specialists of Yandex³ CatBoostClassifier.

The model, trained using synthetic data on balanced classes, was wrong only in 12 cases, showing an accuracy of 0.9863 and a limiting ROC_AUC_score = 0.9999 after 1000 iterations. In principle, this may indicate an "overfitting" model and, consequently, a low predictive ability. For verification, we will use the actual data on 185 films, to which the model, according to the conditions of hypothesis testing, did not have access either at the training stage or at the testing stage.

Despite the assumption that the model was retrained, the unbalanced validation data by class (170 unsuccessful projects. 15 that paid off at the box office) and the fact that they reflect a new historical period

in the development of Russian cinema associated with the departure of foreign distributors, the classifying ability of the model remained extremely high. Accuracy = 0.9568. ROC AUC score = 0.9803.

Let's test the proposed approach on a four-class classification. The sample is also divided into 1.500 films for training and testing the model, and 185 for subsequent validation. A significant difference is that using the imblearn.over_sampling module of the RandomOverSampler function and synthetic data. 4 classes were balanced, and the total number of rows in the dataset out of 1.500 became 4843. The CatBoostClassifier model was used for classification in adaptation to 4 classes. The accuracy values of 0.9842 and ROC AUC score = 0.9997 were obtained on the test data.

Similarly, we use the new data to validate the model. Due to the specifics of the data, the results were slightly lower than the test results, which again do not exclude the possibility of using this approach to predict the data of new films at the pre-production stage. The accuracy of the four-class classification was 0.9189. ROC AUC score = 0.9663.

When evaluating the precision, recall, f1-score, and ROC_AUC metrics, we note that the extreme classes (0 and 3) have the highest results, and the most errors are related to the identification of intermediate classes 1 and 2. This is presumably due to a lack of information on the project budget (up to 30%) and conditional payback criteria: two project budgets are rather a rule of thumb for determining the payback of a project.

³ CatBoost is a fast, scalable, and high — performance decision tree gradient enhancement library. It is used for ranking, classification, regression and other machine learning tasks. URL: https://github.com/catboost/ (accessed on 15.03.2024).

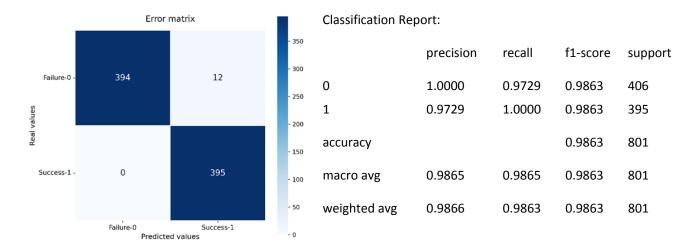


Fig. 3. Error Matrix and Classification Report of the 146-Factor Model

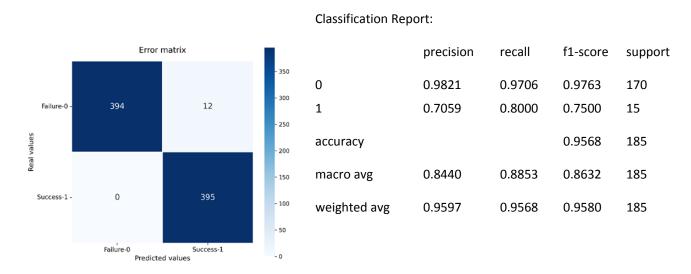


Fig. 4. Error Matrix and Classification Report of the 146-Factor Model based on New Data Source: Compiled by the author.

Based on the results of the experiment, the hypothesis about the predictability of financial results for Russian cinema was confirmed using a machine learning model that was trained on data from previous years for new films, including those that were in the preliminary stages of production before the most expensive phase of filming began. Practical examples of each Russian film are given in Appendix A, which shows the predicted class and actual class, along with errors, for two-class and four-

A slight decrease in classification metrics may be due to: the "retraining" of the model, the use of synthetic data to equalize the imbalance by class, the

class classification.

chronologically "narrow" release period of 185 films, their presentation in chronological order, partly due to fundamental changes in the characteristics of the Russian film market due to the departure of foreign distributors. Each episode of these variants needs additional research. Nevertheless, taking into account the possible further training of predictive models based on new data, it is possible to quickly pre-evaluate the prospects of both an individual film project and a group of film projects in terms of their future financial and other rental results.

The continuation of the study is related to obtaining more accurate budget data (there is a shortage of budget data in 30% of Russian films. which

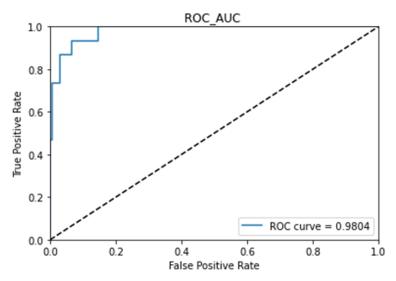


Fig. 5. ROC_AUC_Score Curve for a Two-Class 146-Factor Model on New Data

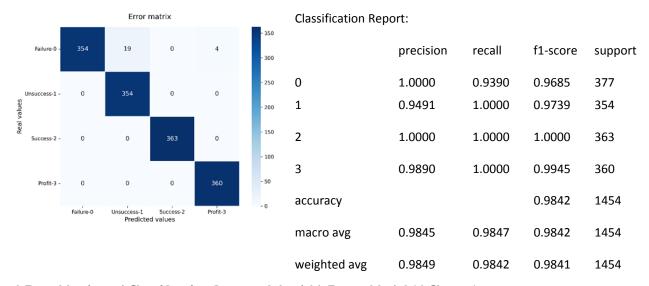


Fig. 6. Error Matrix and Classification Report of the 146-Factor Model (4 Classes)

Source: Compiled by the author.

negatively affects the accuracy of forecasting). The low information openness of the accounting department of the Russian film industry negatively affects the ability to accurately predict fees based on regression models of machine learning. Nevertheless, there is a possibility of such forecasts.

185 films are worth 21.7 billion rubles of fees and 73.5 million views. The main factor is the Cheburashka⁴

anomaly; the project has collected over 7 billion rubles and 23.5 million views. This film is an anomaly due to the release during the New Year period, the lack of competitors and an objective factor — a rare combination of the creative group (the director with the largest series of commercially successful works in history. actors and other members of the creative group with high rental rates).

Taking into account the exclusion of Cheburashka's results and the missing data for Kinopoisk's rating and budgets, we calculated the prediction accuracy (R 2 coefficient of determination) between actual and predicted values. The accuracy for Kinopoisk's

⁴ See the publication: Dozhdikov A.V. Cheburashka's success can be repeated with the help of AI. And not only in the film industry! Plas. 21.03.2023. URL: https://plusworld.ru/journal/2023/plus-3–2023/uspekh-cheburashki-mozhno-povtorit-s-pomoshchyu-ii-i-ne-tolko-v-kinoindustrii/ (accessed on 15.03.2024).

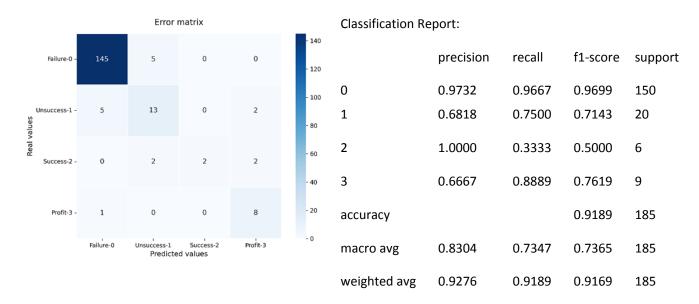


Fig. 7. Error Matrix and Classification Report of the 146-Factor Model (4 Classes) Based on New Data Source: Compiled by the author.

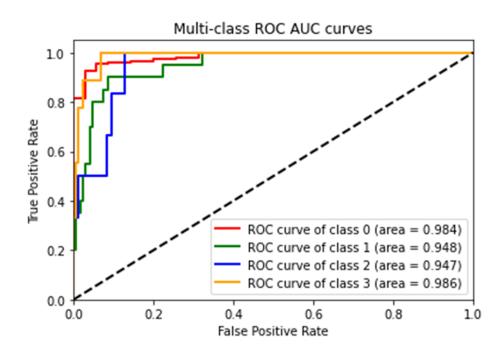


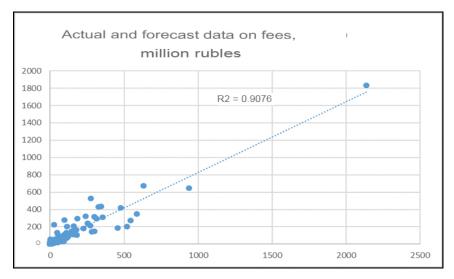
Fig. 8. ROC_AUC_Score Curve for a Four-Class 146-Factor Model on New Data Source: Compiled by the author.

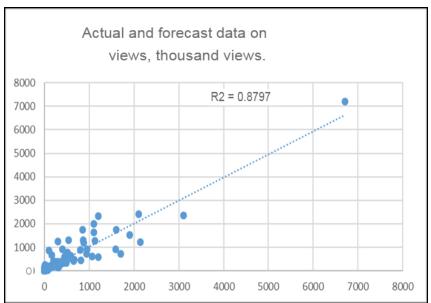
audience rating was 0.8392, for box office fees it was 0.9076 and for viewings it was 0.8797.

The average absolute error MAE (mean absolute error) for fees was 26.78 million rubles, for views — 108.23 thousand, for the rating of Kinopoisk — 0.5874 rating points. Thus, in terms of the average absolute error, this forecasting technique is not suitable for low-budget (usually copyrighted or documentary) films with a small number of screens at the box office

in terms of fees and views. It is recommended to evaluate, first and foremost, medium-budget (80–300 million rubles) and large-budget (up to 850 million rubles) films. Projects with a large budget often do not pay off at the box office and do not recoup two of their budget due to the limited size of the Russian market.

For detailed information on the actual and predicted values, see Appendices A and B.





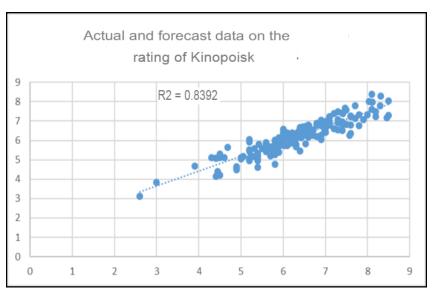


Fig. 9. Discrepancy Between Actual and Predicted Values of Box Office, Views and Viewership Ratings

Individual results — predicted and actual results may differ from each other for films with minimum and maximum scores. However, for the "portfolio of film projects", the discrepancy between the predicted indicators and the actual ones will be significantly smaller. The larger the number of projects evaluated, the smaller the difference between the total predicted and actual financial results.

RESEARCH DIRECTIONS

Further development of methods for predicting both audience ratings [31] and box office receipts [32] involves the use of neural networks, including "deep trust networks" — Deep Belief Network or DBN [33].

It is possible to combine approaches of classical machine learning and neural networks such as IFOA-GRNN [34]. A combination of classical machine learning methods such as "support vector machines", neural networks, and natural language processing methods combined with traditional historical data from IMDb, Rotten Tomatoes, Box Office Mojo, and Metacritic sources also seems promising [27].

A separate area involving the use of elements of "computer vision" is the use of graphic images, including film posters, analyzed using feature extraction for a convolution neural network. The use of deep learning algorithms will make it possible to create a new generation of decision support systems for film production, as well as promising "hybrid" human-machine decision-making systems based on human-machine interaction

CONCLUSIONS

Appendices A and B present the results of the classification of 185 motion pictures (two-class and four-class classifications) and the results of predicting quantitative data on 185 motion pictures. The forecast and actual values are indicated. We note the high accuracy of the classification results. The predictive

ability of regression models (how much a given film will earn and how many viewers will watch it) is limited by the following factors:

- 1. 30% of the budgets of Russian film projects are unknown (hidden by producers from the public).
- 2. The final results are influenced by a number of additional parameters, in particular, the marketing budget, the characteristics of the advertising campaign, the release time of the film, which can be changed by an "administrative" decision, competition with other films, and the cannibalization of the target audience.
- 3. More or less accurate quantitative forecasts are possible for most medium-budget and large-budget films. The coincidence of projected results with actual results is least among blockbuster projects, the rolling fate of which includes an "administrative" resource and low-budget projects.

Taking into account these data and the further training of forecasting models based on the data of new periods, opportunities arise:

- evaluation of film projects at the stage of production pitching (the Cinema Foundation. the Ministry of Culture. private organizations), before the start of the shooting period; to obtain a preliminary forecast, the estimated rental characteristics of the film and information about the creative group are sufficient;
- forming a portfolio of film projects to attract private and public investment; 20–30 films in the "portfolio" per year assume stable profitability over the medium-term planning horizon;
- creation of long-term strategies for the development of national cinematography;
- development of regulatory strategic documents in the field of national cinematography support;
- selection of rental characteristics and characteristics of the creative team in order to achieve maximum effect in terms of audience reach and audience ratings in the production of national films and projects with priority government support.

REFERENCES

- 1. Paul C., Das P.K. Predicting movie revenue before committing significant investments. *Journal of Media Economics*. 2022;34(2):63–90. DOI: 10.1080/08997764.2022.2066108
- 2. Mbunge E., Fashoto S.G., Bimha H. Prediction of box-office success: A review of trends and machine learning computational models. *International Journal of Business Intelligence and Data Mining*. 2022;20(2):192–207. DOI: 10.1504/IJBIDM.2022.120825

- 3. Tantawichien J., Mizuyama H., Nonaka T. Designing a human computation game for enhancing early-phase movie box office prediction. In: Hamada R., et al. Neo-simulation and gaming toward active learning. Singapore: Springer; 2019:13–22. (Translational Systems Sciences. Vol. 18.). DOI: 10.1007/978–981–13–8039–6 2
- 4. Pirunthavi V., Vithusia R.P., Abishankar K., Ekanayake E.M., Yanusha M. Movie success and rating prediction using data mining algorithms. In: Int. res. conf. of Uva Wellassa University (IRCUWU-2020) "Sustainable business transition through information and knowledge dissemination". Badulla: Uva Wellassa University; 2020:175–176. URL: https://www.uwu.ac.lk/wp-content/uploads/2020/proceeding of ircuwu2020 v2.pdf
- 5. Chakraborty P., Rahman Z., Rahman S. Movie success prediction using historical and current data mining. *International Journal of Computer Applications*. 2019;178(47):1–5. DOI: 10.5120/ijca2019919415
- 6. Murschetz P.C., Bruneel C., Guy J.L., et al. Movie industry economics: How data analytics can help predict movies' financial success. *Nordic Journal of Media Management*. 2020;1(3):339–359. DOI: 10.5278/njmm.2597–0445.5871
- 7. Bruneel C., Guy J.-L., Haughton D., et al. Movie analytics and the future of film finance. Are Oscars and box office revenue predictable? In: Murschetz P., Teichmann R., Karmasin M., eds. Handbook of state aid for film. Media business and innovation. Cham: Springer; 2018:551–578. DOI: 10.1007/978–3–319–71716–6 30
- 8. Ruus R., Sharma R. Predicting movies' box office result a large scale study across Hollywood and Bollywood. In: Cherifi H., Gaito S., Mendes J., Moro E., Rocha L., eds. Complex networks and their applications VIII. (COMPLEX NETWORKS 2019). Cham: Springer; 2020:982–994. (Studies in Computational Intelligence. Vol. 882). DOI: 10.1007/978–3–030–36683–4 78
- 9. Adekola O.D., Maitanmi S.O., Kasali F.A., et al. Movie success prediction using data mining. *British Journal of Computer, Networking and Information Technology*. 2021;4(2):22–30. DOI: 10.52589/BJCNIT-CQOCIREC
- 10. Namlı Ö., Ozcan T. Forecasting of box office revenue using machine learning algorithms. *Yönetim Bilişim Sistemleri Dergisi*. 2017;(3):130–143.
- 11. Wang Z., Zhang J., Ji S., et al. Predicting and ranking box office revenue of movies based on Big Data. *Information Fusion*. 2020;60:25–40. DOI: 10.1016/j.inffus.2020.02.002
- 12. Shahid M.H., Islam M.A. Investigation of time series-based genre popularity features for box office success prediction. *The Open Access Journal for Computer Science*. 2023;9: e1603. DOI: 10.7717/peerj-cs.1603
- 13. Dozhdikov A. Prediction of the results of movie release using machine learning. *Voprosy teoreticheskoi ekonomiki* = *Theoretical Economics*. 2023;(4):93–114. (In Russ.). DOI: 10.52342/2587–7666VTE_2023_4_93_114
- 14. Dozhdikov A.V. Determination of investment success and its factors for Russian cinema at the box office using machine learning. *Finance: Theory and Practice*. 2024;28(1):188–203. DOI: 10.26794/2587–5671–2024–28–1–188–203
- 15. Abidi S. M.R., Xu Y., Ni J., Wang X., Zhang W. Popularity prediction of movies: From statistical modeling to machine learning techniques. *Multimedia Tools and Applications*. 2020;79(4):35583–35617. DOI: 10.1007/s11042–019–08546–5
- 16. Li D., Liu Z.-P. Predicting box-office markets with machine learning methods. *Entropy*. 2022;24(5):711. DOI: 10.3390/e24050711
- 17. Qin M., Zhou Q., Chen W., Zhao L. MAMRP: Multi-modal data aware movie rating prediction. In: Yang X., et al. Advanced data mining and applications (ADMA 2023). Cham: Springer; 2023:660–675. (Lecture Notes in Computer Science. Vol. 14177). DOI: 10.1007/978–3–031–46664–9_44
- 18. Lu S.-H., Wang H.-J., Nguyen A.T. Machine learning applications on box-office revenue forecasting: The Taiwanese film market case study. In: Optimal transport statistics for economics and related topics. Cham: Springer; 2023:384–402. (Studies in Systems, Decision and Control. Vol. 483). DOI: 10.1007/978–3–031–35763–3 49
- 19. Gore M., Sheth A., Abbad S., Jain P., Mishra P. IMDB box office prediction using machine learning algorithms. *International Journal for Research in Applied Science and Engineering Technology*. 2022;10(5):2438–2442. DOI: 10.22214/ijraset.2022.42653
- 20. Kang D. Box-office forecasting in Korea using search trend data: A modified generalized Bass diffusion model. *Electronic Commerce Research*. 2021;21(3):41–72. DOI: 10.1007/s10660–020–09456–7
- 21. Li Na., Xia L. Correlation analysis of network Big Data and film time-series data based on machine learning algorithm. *Mathematical Problems in Engineering*. 2022. DOI: 10.1155/2022/4067554

- 22. Yoo B.-K., Kim S.-H. Movie box office prediction at the distribution stage using text mining of movie reviews. *The Korean Logistics Research Association*. 2023;33(1):95–105. DOI: 10.17825/klr.2023.33.1.95
- 23. Quader N., Gani O., Chaki D. Performance evaluation of seven machine learning classification techniques for movie box office success prediction. In: 3rd Int. conf. on electrical information and communication technology (EICT). (Khulna, December 7–9, 2017). New York, NY: IEEE; 2017:1–6. DOI: 10.1109/EICT.2017.8275242
- 24. Lee K., Park J., Kim I., Choi Y. Predicting movie success with machine learning techniques: Ways to improve accuracy. *Information Systems Frontiers*. 2018;20(3):577–588. DOI: 10.1007/s10796–016–9689-z
- 25. Hu Y.-H., Shiau W.-M., Shih S.-P., Chen C.-J. Considering online consumer reviews to predict movie box-office performance between the years 2009 and 2014 in the US. *The Electronic Library*. 2018;36(6):1010–1026. DOI: 10.1108/EL-02-2018-0040
- 26. Gürbüz A., Biçer E., Kaya T. Prediction of gross movie revenue in the Turkish box office using machine learning techniques. In: Kahraman C., et al., eds. Intelligent and fuzzy systems (INFUS 2022). Cham: Springer; 2022:86–92. (Lecture Notes in Networks and Systems. Vol. 505). DOI: 10.1007/978–3–031–09176–6_10
- 27. Ni Y., Dong F., Zou M., Li W. Movie box office prediction based on multi-model ensembles. *Information*. 2022;13(6):299. DOI: 10.3390/info13060299
- 28. Lee S., Bikash K.C., Choeh J. Y. Comparing performance of ensemble methods in predicting movie box office revenue. *Heliyon*. 2020;6(6): e04260. DOI: 10.1016/j.heliyon.2020.e04260
- 29. Park J.H., Lim C. Predicting movie audience with stacked generalization by combining machine-learning algorithms. *Communications for Statistical Applications and Methods*. 2021;28(3):217–232. DOI: 10.29220/CSAM.2021.28.3.217
- 30. Dutta S., Dasgupta K. A shallow approach to gradient boosting (XGBoosts) for prediction of the box office revenue of a movie. In: Proc. Int. conf. on innovations in software architecture and computational systems. Singapore: Springer; 2021:207–219. DOI: 10.1007/978–981–16–4301–9 16
- 31. Su Y., Zhang Y., Yan J. Neural network based movie rating prediction. In: Proc. Int. conf. on Big Data and computing (ICBDC'18). (Shenzhen, April 28–30, 2018). New York, NY: Association for Computing Machinery; 2018:33–37. DOI: 10.1145/3220199.3220204
- 32. Ru Y., Li B., Chai J. An effective daily box office prediction model based on deep neural networks. *Cognitive Systems Research*. 2018;52:182–191. DOI: 10.1016/j.cogsys.2018.06.018
- 33. Wang W., Xiu J., Yang Z., Liu C. A deep learning model for predicting movie box office based on deep belief network. In: Tan Y., Shi Y., Tang Q., eds. Advances in swarm intelligence (ICSI 2018). Cham: Springer; 2018:530–541. (Lecture Notes in Computer Science. Vol. 10942). DOI: 10.1007/978–3–319–93818–9_51
- 34. Lu W., Zhang X., Zhan X. Movie box office prediction based on IFOA-GRNN. *Discrete Dynamics in Nature and Society*. 2022:3690077. DOI: 10.1155/2022/3690077

ABOUT THE AUTHOR

Anton V. Dozhdikov — Cand. Sci. (Polit.), Senior Researcher at the UNESCO Chair, Institute of Socio-Political Research of the Federal Center of Theoretical and Applied Sociology of the Russian Academy of Sciences, Moscow, Russian Federation http://orcid.org/0000-0002-1069-1648 antondnn@yandex.ru

Conflicts of Interest Statement: The author has no conflicts of interest to declare.

The article was submitted on 01.04.2024; revised on 01.05.2024 and accepted for publication on 22.05.2024. The authors read and approved the final version of the manuscript.

Translated by N.I. Sokolova

Appendix A

Results of Predictive Classification in Accordance with Actual Values

	2-class cl	assification	4-class cl	lassification
Title of the movie	Actual class	Predicted class	Actual class	Predicted class
Nakhimov naval graduates	0	0	0	0
Asphalt Sun	0	0	0	0
Divorce: The Second Film	0	0	0	0
Legends of the Eaglet	0	0	1	0
Archipelago	0	0	0	0
Night Mode: Film	0	0	0	0
Call Sign "Baron"	0	0	0	0
The Little Prince	0	0	0	0
Lena & Justice	0	0	1	0
Barbosky Team	0	0	0	0
Calendar Maya	0	0	1	1
Turbosaurs. Go Ahead!	0	0	0	0
Crazy Teachers	0	0	0	0
Where Our Home Is	0	0	0	0
Start Over	0	0	0	0
At the Very White Sea	0	0	0	0
The Tiber	0	0	0	0
Non-Childish House	0	0	0	0
Kat	0	0	0	0
The Swan Lake	0	0	0	0
The Little Red Riding Hood	0	0	0	0
Who's there?	0	0	0	0
Parent	0	0	0	0
Express	0	0	1	1
It's more fun together	0	0	0	0
The French Master	0	0	0	0
Distant Loved Ones	0	0	0	0
My Son's Mother	0	0	0	0

	2-class cl	assification	4-class cl	lassification
Title of the movie	Actual class	Predicted class	Actual class	Predicted class
Goliath	0	0	0	0
Zina and Lech: Operation "Tail and Udder"	1	1	3	3
Heart of Parma	0	0	1	1
A Tale for Old	0	0	1	0
Love Stories	0	0	0	0
Ivan Semenov: The School Commotion	1	1	2	3
Additional Lesson	0	0	0	0
You Can't Cry	0	0	0	0
Girl in a Million	0	0	0	0
The Formidable Dad	0	0	0	0
A Great Journey. Special Delivery	0	0	0	0
Liberia: Treasure Hunters	0	0	0	1
The Adventures of Little Baja	0	0	0	0
Summer Will Be Over Soon	0	0	0	0
Carpenter	0	0	0	0
Velga	0	0	0	0
Petropolis	0	0	0	0
Kunnei	1	1	3	3
Hosanna	0	0	0	0
Patroness	0	0	0	0
The Saint	0	0	0	0
I will live	0	0	0	0
The Golden Neighbors	0	0	0	0
The Lovers	0	1	1	1
Peter the Great. the last Tsar and the first Emperor	0	0	1	1
A Similar Person	0	0	0	0
The Stars will show me the Way.	0	0	0	0
The Wizards	0	0	0	0
Like a Man	0	0	0	0
Curse: The Dead Earth	0	0	0	0

	2-class cl	lassification	4-class cl	lassification
Title of the movie	Actual class	Predicted class	Actual class	Predicted class
The Day Before	0	0	0	0
Zemun	0	0	0	0
Angels are Sweet	0	0	0	0
A Thousand Cheap Lighters	0	0	0	0
Chink: the Tailed Detective	0	0	0	0
Elephant	0	0	0	0
Jeanne	0	0	0	0
I'm Rewinding!	0	0	0	0
Grisha Subbotin	0	0	0	0
The Kingdom Against the Robbers	0	0	0	0
Honest Divorce 2	0	0	0	0
Winter Season	0	0	0	0
Smart Masha	0	0	0	0
The Sisters	0	0	0	0
Our Winter	0	0	0	0
Physics Department	0	0	0	0
F20	0	0	0	0
Emperor	0	0	0	0
Pelevin	0	0	0	0
Christmas Trees 9	1	1	3	3
By Touch	0	0	0	0
A Pool	0	0	0	0
Shadow. Take Gordey	0	0	0	0
The Nutcracker and the Magic Flute	0	0	0	0
Secret Santa	0	0	1	1
On Exhale	0	0	0	0
A Wedge Came Together on You	0	0	0	0
Balabanov: The Bell Tower. Requiem	0	0	0	0
Nearby	0	0	0	0
Masha and the Bear in Cinema: 12 Months	0	0	0	0

	2-class cl	assification	4-class cl	lassification
Title of the movie	Actual class	Predicted class	Actual class	Predicted class
Naughty Boy 2	1	1	3	3
Exes: Happy End	0	0	0	0
Chuck & Huck: A Great Adventure	0	0	1	1
Mira	0	0	0	1
Christmas Trees and Needles	0	0	0	0
Cheburashka	1	1	3	3
Music Video Makers	0	0	0	0
Umka	0	0	0	0
Youth	0	0	0	0
Turbosaurs. Winter Adventures	0	0	0	0
The Path of the Dream	0	0	0	0
Camel's Arc	0	0	0	0
Lily and the Sea / Grand Marin	0	0	0	0
Vysotsky: Unknown Pages	0	0	0	0
Don't Bury Me Without Ivan	0	0	0	0
Dear Mom and Dad	0	0	0	0
What Men Talk About	0	1	1	3
One Real Day	0	0	0	0
Liza	0	0	0	0
An Easy Introduction	0	0	0	0
The White Angel of the Tundra	0	1	1	1
Free Relationship	0	1	1	1
То Ве	0	0	0	1
Snow. Sister. and Wolverine	0	0	0	0
The Righteous One	0	0	0	0
Naughty	1	1	3	3
The Snow Queen: Defrosting	0	0	0	0
This Love	0	0	0	0
Timbre	0	0	0	0
Women of Altai	0	0	0	0

	2-class cl	lassification	4-class cl	lassification
Title of the movie	Actual class	Predicted class	Actual class	Predicted class
Bugun-Bylyr 2	1	1	2	2
Checago	0	0	0	0
Rabies	0	0	0	0
Dads Versus Moms	1	0	3	0
Zhenya and Vanya at the Edge of the World	0	0	0	0
Where Is the Border?	0	0	0	0
Nuremberg	0	0	1	1
A Healthy Person	0	0	0	0
The Unscrupulous in the Countryside	0	0	0	0
The Detector	0	0	0	0
She's gone crazy	1	1	2	3
Escort Girl	0	0	0	0
The Cold Race	0	0	0	0
The Holy Archipelago	0	0	0	0
Medea	0	0	0	0
Towards the Sun. Along the Rows of Corn	1	1	2	2
Almost Like Everyone Else	0	0	0	0
Sergius Against Evil Spirits: The Sabbath	0	0	0	0
The Puppeteer	0	0	0	0
Let's Talk About It	0	0	0	0
Cats of the Hermitage	0	0	1	0
Aita	1	1	3	3
Lovey-Dovey	0	0	0	1
My God! I Feel Your Approach!	0	0	0	0
A Strange House	0	0	0	0
Flood	0	0	0	0
I want to! I will!	0	0	0	0
Live broadcast	0	0	0	0
The waves	0	0	0	0
Doctor	0	0	0	0

	2-class cl	lassification	4-class cl	lassification
Title of the movie	Actual class	Predicted class	Actual class	Predicted class
Zoskina gas station	0	0	0	0
Russian Cross	0	0	0	0
Challenge	0	1	1	3
Yaga and The Book of Spells	0	0	0	0
Amnesty	0	0	0	0
Treasures of Guerrilla Forest	0	0	0	0
Yura. the janitor	0	0	0	0
The lesser evil	0	0	0	0
Masquerade	0	0	0	0
14+ continues	0	0	1	0
Bulgakov. this world is mine!	0	0	0	0
Khitrova. The Sign of Four	0	0	0	0
Kaka. directly. another movie	1	1	3	3
Before dawn	0	0	1	1
Masha and The Bear in the movie. say "oh!"	0	0	1	1
Knots	0	0	0	0
Tin can head	0	0	0	0
Sun tastes like	0	0	0	0
Bullfinch	0	0	0	0
Through time	0	0	0	0
Mikulai	0	0	0	0
Maldives waiting	0	0	0	0
Breathing	0	0	0	1
Turbosaur. hello. siren!	0	0	0	0
Status	0	0	0	0
Johnny	0	0	0	0
Centaur	0	0	1	1
Business in Russia	0	0	0	0
To Palych!	1	0	2	1
Baba Yaga saves the world	1	0	2	1

Appendix A (continued)

	2-class cl	assification	4-class classification		
Title of the movie	Actual class	Predicted class	Actual class	Predicted class	
Witness	0	0	0	0	
Like stars	0	0	0	0	
Quest	0	0	0	0	
Ruslan and Ludmila. more than a fairy tale	0	0	0	0	
Chizhik-Pyzhik returns	0	0	0	0	
Nina. girl and piano thieves	0	0	0	0	
Concert canceled	0	0	0	0	

Appendix B

Actual and Predicted Figures for Box Office Receipts, Audience Views,
and "Kinopoisk" Ratings

No.	Name	ID	Actual box office receipts	Expected box office receipts	Actual views	Predicted views	Actual rating	Predicted rating
1	Nakhimov naval graduates Petropolis	1403069	65 000 000	75 190 862	264000	342 669	5.24	5.2
2	Asphalt Sun	1392757	9100000	14684488	36 000	58174	7.10	6.78
3	Divorce: The Second Film	5042126	6900000	14253677	26 000	56 278	6.43	6.15
4	Legends of the Eaglet	4517052	62 000 000	44 97 3 1 3 1	284000	169044	7.47	7.66
5	Archipelago	1256273	819000	960 973	3 600	3 999	5.75	5.48
6	Night Mode: Film	5034524	73 000 000	29859533	26 000	75 715	5.99	6
7	Call Sign "Baron"	1395858	978 000	1 265 734	3 500	6 2 6 3	5.79	5.59
8	The Little Prince	572553	17000	134147	105	614	8.03	8.02
9	Lena & Justice	4522328	82 000 000	49 468 637	30 000	119982	6.55	6.72
10	Barbosky Team	4518842	97000000	113138269	448 000	616840	8.11	7.99
11	Calendar Maya	4963617	115 000 000	70163944	483 000	320873	7.40	6.94
12	Turbosaurs. Go Ahead!	5042646	17000000	27931832	95 000	104736	7.60	6.36
13	Crazy Teachers	5042247	11000000	6346878	4600	15 196	4.50	5.31
14	Where Our Home Is	4934473	289 000	362769	1700	1708	8.31	8.3
15	Start Over	2000101	55 000 000	44862489	208 000	185 372	6.10	5.74

No.	Name	O	Actual box office receipts	Expected box office receipts	Actual views	Predicted views	Actual rating	Predicted rating
16	At the Very White Sea	4624744	568 000	751443	4000	3 683	6.42	6.39
17	The Tiber	4518317	19000000	17323733	67000	77573	5.97	6.01
18	Non-Childish House	4680791	81 000 000	29 539 678	29 000	120898	6.53	5.82
19	Kat	4680804	2 900 000	8 406 769	8 600	41158	5.80	6.03
20	The Swan Lake	1282100	24000	1406730	81	4571	6.25	5.96
21	The Little Red Riding Hood	1445165	144 000 000	147842388	546 000	518831	4.45	4.39
22	Who's there?	4999693	91 000 000	87215892	32 000	201 908	6.22	6.17
23	Parent	1399249	20 000 000	5 417 875	6900	21429	7.21	7.39
24	Express	2000127	81 000 000	37800832	27000	108 361	6.37	6.47
25	It's more fun together	5075871	51000000	20 383 758	9500	71 274	5.05	5.19
26	The French Master	4528694	6400000	2 321 512	11 000	9450	5.32	5.59
27	Distant Loved Ones	4489530	24000000	23 899 852	90 000	73 357	7.42	7.38
28	My Son's Mother	4400160	9 200 000	28 682 771	32 000	149 687	5.86	5.89
29	Goliath	5047455	48 000	237145	137	1145	6.46	6.7
30	Zina and Lech: Operation "Tail and Udder"	5119760	15 000 000	11 095 392	46 000	48 230	Н/Д	4.31
31	Heart of Parma	1045585	937000000	648 048 356	3100000	2 345 388	6.72	6.55
32	A Tale for Old	4739575	3 800 000	4 201 228	13 000	18707	6.00	6.21
33	Love Stories	984365	70 000 000	61 204 656	253 000	234582	4.68	5.63
34	Ivan Semenov: The School Commotion	5021585	144 000 000	122 546 247	648 000	421 285	6.19	5.87
35	Additional Lesson	1451292	12000000	9790986	43 000	46126	6.98	6.51
36	You Can't Cry	4322004	3400000	4 308 830	11 000	20444	6.66	6.37
37	Girl in a Million	5117212	132 000	239639	608	1136	4.89	4.48
38	The Formidable Dad	1445164	158 000 000	108 267 371	662 000	478651	6.01	5.74
39	A Great Journey. Special Delivery	1445162	180 000 000	104317294	817000	442 602	7.57	6.25
40	Liberia: Treasure Hunters	1398953	238 000 000	323131523	860 000	1 305 321	6.22	6.38
41	The Adventures of Little Baja	4530500	3700000	5 332 417	18 000	27764	Н/Д	5.21
42	Summer Will Be Over Soon	1443813	1200000	1190119	3 900	4133	6.14	6.06
43	Carpenter	4381764	1400000	11 233 990	4100	56437	6.61	6.77
44	Velga	1344504	825 000	1079702	3000	9 060	6.28	5.96
45	Petropolis	1399052	2700000	4828853	9100	29 594	5.42	5.8

46 Kunnel 5160746 6300000 4484640 22000 23461 H/Д 5.25 47 Hosanna 4933779 88000 857851 518 8312 8.50 7.29 48 Patroness 1043835 182000 764612 1100 4458 H/Д 6.08 49 The Saint 4959314 172000 932162 971 8734 846 7.17 50 I will live 4660300 20000000 30428381 73000 113036 6.90 6.87 51 The Golden Neighbors 1328028 2400000 3599552 9100 13557 4.40 4.16 52 The Lovers 4639557 176000000 163037230 586000 624977 5.90 6.05 53 Peter the Great, the last Tsar and the first Emperor 5116673 275000000 1759313 1700 8795 6.00 6.65 54 A Similar Person 5074909 554000 1759313 1700<		Appendix B (con							
47 Hosanna 4933779 88 000 857851 518 8312 8.50 7.29 48 Patroness 1043835 182 000 764612 1100 4438 H/Д 6.08 49 The Saint 4959314 172 000 932 162 971 8734 8.46 7.17 50 I will live 4660300 2000000 30428381 73000 113036 6.90 6.87 51 The Golden Neighbors 1328028 2400000 3599552 9100 13557 4.40 4.16 52 The Lovers 4639557 176000000 163037230 586000 624977 5.90 6.05 53 Peter the Great, the last Tsar and the first Emperor 5074909 554000 1759313 1700 8795 6.00 6.62 54 A Similar Person 5074909 554000 1759313 1700 8795 6.00 6.42 55 The Stars will show me the Way. 1162851 3400000 1118	No.	Name	Q	Actual box office receipts	Expected box office receipts	Actual views	Predicted views	Actual rating	Predicted rating
48 Patroness 1043835 182000 764612 1100 4438 H/Д 6.08 49 The Saint 4959314 172000 932162 971 8734 8.46 7.37 50 I will live 4660300 2000000 30428381 73000 115036 6.90 6.87 51 The Golden Neighbors 1328028 2400000 3599552 9100 13557 4.40 4.16 52 The Lovers 4639557 176000000 163037230 386000 624977 5.90 6.05 53 Peter the Great, the last Tsar and the first Emperor 5116673 27500000 529076995 1200000 2323883 7.00 6.65 54 A Similar Person 5074909 554000 1759313 1700 8795 6.00 6.42 55 Way 1162851 3400000 11182553 15000 56452 7.30 6.91 56 The Wizards 1008397 71000000 8062121	46	Kunnei	5160746	6 300 000	4484640	22 000	23 461	Н/Д	5.25
49 The Saint 4959314 172000 932162 971 8734 8.46 7.17 50 I will live 4660300 20000000 30428381 73000 113036 6.90 6.87 51 The Golden Neighbors 1328028 2400000 3599552 9100 13557 4.40 4.16 52 The Lovers 4639557 176000000 163037230 586000 624977 5.90 6.05 53 Peter the Great, the last Tsar and the first Emperor 5116673 275000000 329076995 1200000 2323883 7.00 6.65 54 A Similar Person 5074909 554000 1759313 1700 8795 6.00 6.42 55 Way 1162851 3400000 11182553 15000 56452 7.30 6.91 56 The Wizards 1008397 71000000 80602121 289000 392378 5.20 6.05 57 Like a Man 4559710 27000000 280	47	Hosanna	4933779	88 000	857851	518	8 3 1 2	8.50	7.29
50 I will live 4660300 20000000 30428381 73000 113036 6.90 6.87 51 The Golden Neighbors 1328028 2400000 3599552 9100 13557 4.40 4.16 52 The Lovers 4639557 176000000 163037230 586000 624977 5.90 6.05 53 Peter the Great, the last Tsar and the first Emperor 5116673 275000000 529076995 1200000 2323883 7.00 6.65 54 A Similar Person 5074909 554000 1759313 1700 8795 6.00 6.42 55 The Stars will show me the Way. 1162851 3400000 11182553 15000 56452 7.30 6.91 56 The Wizards 1008397 71000000 280227786 87000 110736 7.10 7.24 57 Like a Man 4559710 27000000 280227786 87000 110736 7.10 7.24 58 Curse: The Dead Earth 48377	48	Patroness	1043835	182 000	764612	1100	4438	Н/Д	6.08
51 The Golden Neighbors 1328028 2400000 3599552 9100 13557 4.40 4.16 52 The Lovers 4639557 176000000 163037230 586000 624977 5.90 6.05 53 Peter the Great, the last Tsar and the first Emperor 5116673 275000000 529076995 1200000 2323883 7.00 6.65 54 A Similar Person 5074909 554000 1759313 1700 8795 6.00 6.42 55 The Stars will show me the Way. 1162851 3400000 11182553 15000 56452 7.30 6.91 56 The Wizards 1008397 71000000 280227786 87000 110736 7.10 7.24 57 Like a Man 4559710 27000000 280227786 87000 110736 7.10 7.24 58 Curse: The Dead Earth 4837786 1200000 7014696 4200 29224 5.20 5.93 59 The Day Before 432112	49	The Saint	4959314	172 000	932162	971	8734	8.46	7.17
52 The Lovers 4639557 176000000 163037230 586000 624977 5.90 6.05 53 Peter the Great, the last Tsar and the first Emperor 5116673 275000000 529076995 1200000 2323883 7.00 6.65 54 A Similar Person 5074909 554000 1759313 1700 8795 6.00 6.42 55 The Stars will show me the Way. 1162851 3400000 11182553 15000 56452 7.30 6.91 56 The Wizards 1008397 71000000 80602121 289000 392378 5.20 6.05 57 Like a Man 4559710 27000000 28027786 87000 110736 7.10 7.24 58 Curse: The Dead Earth 4837786 1200000 7014696 4200 29224 5.20 5.93 59 The Day Before 4321128 841000 99946 3000 4658 5.40 5.07 60 Zemun 4388687 3	50	I will live	4660300	20 000 000	30 428 381	73 000	113 036	6.90	6.87
53 Peter the Great, the last Tsar and the first Emperor 5116673 275000000 529076995 1200000 2323883 7.00 6.65 54 A Similar Person 5074909 554000 1759313 1700 8795 6.00 6.42 55 The Stars will show me the Way. 1162851 3400000 11182553 15000 56452 7.30 6.91 56 The Wizards 1008397 71000000 80602121 289000 392378 5.20 6.05 57 Like a Man 4559710 27000000 28027786 87000 110736 7.10 7.24 58 Curse: The Dead Earth 4837786 1200000 7014696 4200 29224 5.20 5.93 59 The Day Before 4321128 841000 99946 3000 4658 5.40 5.07 60 Zemun 4388687 3500000 421344 868 1957 6.30 6.37 61 Angels are Sweet 4694772 19600	51	The Golden Neighbors	1328028	2400000	3 599 552	9100	13557	4.40	4.16
55 and the first Emperor \$116673 \$275000000 \$29076995 \$1200000 \$232888 700 6.65 54 A Similar Person 5074909 554000 1759313 1700 8795 6.00 6.42 55 The Stars will show me the Way. 1162851 3400000 11182553 15000 56452 7.30 6.91 56 The Wizards 1008397 71000000 80602121 289000 392378 5.20 6.05 57 Like a Man 4559710 27000000 28027786 87000 110736 7.10 7.24 58 Curse: The Dead Earth 4837786 1200000 7014696 4200 29224 5.20 5.93 59 The Day Before 4321128 841000 999946 3000 4658 5.40 5.07 60 Zemun 4388687 3500000 4690601 12000 15947 6.20 6.21 61 Angels are Sweet 4694772 196000 421344	52	The Lovers	4639557	176 000 000	163 037 230	586 000	624977	5.90	6.05
55 The Stars will show me the Way. 1162851 3400000 11182553 15000 56452 7.30 6.91 56 The Wizards 1008397 71000000 80602121 289000 392378 5.20 6.05 57 Like a Man 4559710 27000000 28027786 87000 110736 7.10 724 58 Curse: The Dead Earth 4837786 1200000 7014696 4200 29224 5.20 5.93 59 The Day Before 4321128 841000 99946 3000 4658 5.40 5.07 60 Zemun 4388687 3500000 4690601 12000 15947 6.20 6.21 61 Angels are Sweet 4694772 196000 421344 868 1957 6.30 6.37 62 A Thousand Cheap Lighters 5016804 1100000 1573941 3800 6038 6.30 6.28 63 Chink: the Tailed Detective 5088766 85000000 9172	53		5116673	275 000 000	529076995	1 200 000	2 3 2 3 8 8 3	7.00	6.65
55 Way. 1162851 3400000 11182553 15000 36452 7.30 6.91 56 The Wizards 1008397 71000000 80602121 289000 392378 5.20 6.05 57 Like a Man 4559710 27000000 28027786 87000 110736 7.10 7.24 58 Curse: The Dead Earth 4837786 1200000 7014696 4200 29224 5.20 5.93 59 The Day Before 4321128 841000 999946 3000 4658 5.40 5.07 60 Zemun 4388687 3500000 4690601 12000 15947 6.20 6.21 61 Angels are Sweet 4694772 196000 421344 868 1957 6.30 6.37 62 A Thousand Cheap Lighters 5016804 1100000 1573941 3800 6038 6.30 6.28 63 Chink: the Tailed Detective 5088766 850000000 91722969 35	54	A Similar Person	5074909	554000	1759313	1700	8 7 9 5	6.00	6.42
57 Like a Man 4559710 27000000 28027786 87000 110736 7.10 7.24 58 Curse: The Dead Earth 4837786 1200000 7014696 4200 29224 5.20 5.93 59 The Day Before 4321128 841000 999946 3000 4658 5.40 5.07 60 Zemun 4388687 3500000 4690601 12000 15947 6.20 6.21 61 Angels are Sweet 4694772 196000 421344 868 1957 6.30 6.37 62 A Thousand Cheap Lighters 5016804 1100000 1573941 3800 6038 6.30 6.28 63 Chink: the Tailed Detective 5088766 85000000 91722969 354000 369629 6.20 6.12 64 Elephant 5047298 20000000 21931224 68000 90386 6.60 6.48 65 Jeanne 900055 3400000 57025433 11000	55		1162851	3400000	11 182 553	15 000	56452	7.30	6.91
58 Curse: The Dead Earth 4837786 1200000 7014696 4200 29224 5.20 5.93 59 The Day Before 4321128 841000 999946 3000 4658 5.40 5.07 60 Zemun 4388687 3500000 4690601 12000 15947 6.20 6.21 61 Angels are Sweet 4694772 196000 421344 868 1957 6.30 6.37 62 A Thousand Cheap Lighters 5016804 1100000 1573941 3800 6038 6.30 6.28 63 Chink: the Tailed Detective 5088766 85000000 91722969 354000 369629 6.20 6.12 64 Elephant 5047298 20000000 21931224 68000 90386 6.60 6.48 65 Jeanne 900055 3400000 57025433 11000 252381 6.70 6.27 66 I'm Rewinding! 5126797 14000000 53329355 1	56	The Wizards	1008397	71 000 000	80 602 121	289 000	392 378	5.20	6.05
59 The Day Before 4321128 841000 999946 3000 4658 5.40 5.07 60 Zemun 4388687 3500000 4690601 12000 15947 6.20 6.21 61 Angels are Sweet 4694772 196000 421344 868 1957 6.30 6.37 62 A Thousand Cheap Lighters 5016804 1100000 1573941 3800 6038 6.30 6.28 63 Chink: the Tailed Detective 5088766 85000000 91722969 354000 369629 6.20 6.12 64 Elephant 5047298 20000000 21931224 68000 90386 6.60 6.48 65 Jeanne 900055 3400000 57025433 11000 252381 6.70 6.27 66 I'm Rewinding! 5126797 14000000 31093554 54000 110591 7.60 6.78 67 Grisha Subbotin 1410951 42000000 53329355 189	57	Like a Man	4559710	27000000	28027786	87000	110736	7.10	7.24
60 Zemun 4388687 3500000 4690601 12000 15947 6.20 6.21 61 Angels are Sweet 4694772 196000 421344 868 1957 6.30 6.37 62 A Thousand Cheap Lighters 5016804 1100000 1573941 3800 6038 6.30 6.28 63 Chink: the Tailed Detective 5088766 85000000 91722969 354000 369629 6.20 6.12 64 Elephant 5047298 20000000 21931224 68000 90 386 6.60 6.48 65 Jeanne 900055 3400000 57025433 11000 252381 6.70 6.27 66 I'm Rewinding! 5126797 14000000 31093554 54000 110591 7.60 6.78 67 Grisha Subbotin 1410951 4200000 5267243 17000 21104 5.20 4.96 68 The Kingdom Against the Robbers 4853046 42000000 5332935	58	Curse: The Dead Earth	4837786	1 200 000	7014696	4200	29 224	5.20	5.93
61 Angels are Sweet 4694772 196000 421344 868 1957 6.30 6.37 62 A Thousand Cheap Lighters 5016804 1100000 1573941 3800 6038 6.30 6.28 63 Chink: the Tailed Detective 5088766 85000000 91722969 354000 369629 6.20 6.12 64 Elephant 5047298 20000000 21931224 68000 90 386 6.60 6.48 65 Jeanne 900055 3400000 57025433 11000 252381 6.70 6.27 66 I'm Rewinding! 5126797 14000000 31093554 54000 110591 7.60 6.78 67 Grisha Subbotin 1410951 42000000 5267243 17000 21104 5.20 4.96 68 The Kingdom Against the Robbers 4853046 42000000 53329355 189000 252476 4.40 5.09 69 Honest Divorce 2 4856074 32000000	59	The Day Before	4321128	841 000	999 946	3 000	4658	5.40	5.07
A Thousand Cheap Lighters 5016804 1100000 1573941 3800 6038 6.30 6.28 63 Chink: the Tailed Detective 5088766 85000000 91722969 354000 369629 6.20 6.12 64 Elephant 5047298 20000000 21931224 68000 90386 6.60 6.48 65 Jeanne 900055 3400000 57025433 11000 252381 6.70 6.27 66 I'm Rewinding! 5126797 14000000 31093554 54000 110591 7.60 6.78 67 Grisha Subbotin 1410951 4200000 5267243 17000 21104 5.20 4.96 68 The Kingdom Against the Robbers 4853046 42000000 53329355 189000 252476 4.40 5.09 69 Honest Divorce 2 4856074 32000000 56615622 114000 194309 5.90 5.39 70 Winter Season 2000121 1800000 2838079 5500 10619 7.40 6.96 71 Smart Masha 4710763 15000000 25819110 57000 79271 5.90 6.14 72 The Sisters 4661294 22000000 35564788 75000 121605 5.60 5.71 73 Our Winter 5104424 4600000 5732696 14000 25268 6.80 6.9 74 Physics Department 5133122 259000 18388610 1200 148222 5.90 5.7	60	Zemun	4388687	3 500 000	4690601	12 000	15 947	6.20	6.21
63 Chink: the Tailed Detective 5088766 85000000 91722969 354000 369629 6.20 6.12 64 Elephant 5047298 20000000 21931224 68000 90386 6.60 6.48 65 Jeanne 900055 3400000 57025433 11000 252381 6.70 6.27 66 I'm Rewinding! 5126797 14000000 31093554 54000 110591 7.60 6.78 67 Grisha Subbotin 1410951 4200000 5267243 17000 21104 5.20 4.96 68 The Kingdom Against the Robbers 4853046 42000000 53329355 189000 252476 4.40 5.09 69 Honest Divorce 2 4856074 32000000 56615622 114000 194309 5.90 5.39 70 Winter Season 200121 1800000 2838079 5500 10619 7.40 6.96 71 Smart Masha 4710763 15000000 2	61	Angels are Sweet	4694772	196 000	421 344	868	1957	6.30	6.37
64 Elephant 5047298 20000000 21931224 68 000 90 386 6.60 6.48 65 Jeanne 900055 3400000 57025433 11 000 252 381 6.70 6.27 66 I'm Rewinding! 5126797 14000000 31093554 54000 110 591 7.60 6.78 67 Grisha Subbotin 1410951 42000000 5267243 17000 21104 5.20 4.96 68 The Kingdom Against the Robbers 4853046 42000000 53 329355 189 000 252 476 4.40 5.09 69 Honest Divorce 2 4856074 32 000 000 56 615 622 114 000 194 309 5.90 5.39 70 Winter Season 2000121 1800000 28 38 079 5 500 10 619 7.40 6.96 71 Smart Masha 47 10763 15 000 000 25 819 110 57 000 79 271 5.90 6.14 72 The Sisters 4661294 22 000 000	62	A Thousand Cheap Lighters	5016804	1100000	1573941	3 800	6 0 3 8	6.30	6.28
65 Jeanne 900055 3400000 57025433 11000 252381 6.70 6.27 66 I'm Rewinding! 5126797 14000000 31093554 54000 110591 7.60 6.78 67 Grisha Subbotin 1410951 42000000 5267243 17000 21104 5.20 4.96 68 The Kingdom Against the Robbers 4853046 42000000 53329355 189000 252476 4.40 5.09 69 Honest Divorce 2 4856074 32000000 56615622 114000 194309 5.90 5.39 70 Winter Season 2000121 1800000 2838079 5500 10619 7.40 6.96 71 Smart Masha 4710763 15000000 25819110 57000 79271 5.90 6.14 72 The Sisters 4661294 22000000 35564788 75000 121605 5.60 5.71 73 Our Winter 5104424 4600000 5732696	63	Chink: the Tailed Detective	5088766	85 000 000	91722969	354000	369629	6.20	6.12
66 I'm Rewinding! 5126797 14000000 31093554 54000 110591 7.60 6.78 67 Grisha Subbotin 1410951 4200000 5267243 17000 21104 5.20 4.96 68 The Kingdom Against the Robbers 4853046 42000000 53329355 189000 252476 4.40 5.09 69 Honest Divorce 2 4856074 32000000 56615622 114000 194309 5.90 5.39 70 Winter Season 2000121 1800000 2838079 5500 10619 7.40 6.96 71 Smart Masha 4710763 15000000 25819110 57000 79271 5.90 6.14 72 The Sisters 4661294 22000000 35564788 75000 121605 5.60 5.71 73 Our Winter 5104424 4600000 5732696 14000 25268 6.80 6.9 74 Physics Department 5133122 259000 1838861	64	Elephant	5047298	20 000 000	21 931 224	68 000	90 386	6.60	6.48
67 Grisha Subbotin 1410951 4200000 5267243 17000 21104 5.20 4.96 68 The Kingdom Against the Robbers 4853046 42000000 53329355 189000 252476 4.40 5.09 69 Honest Divorce 2 4856074 32000000 56615622 114000 194309 5.90 5.39 70 Winter Season 2000121 1800000 2838079 5500 10619 7.40 6.96 71 Smart Masha 4710763 15000000 25819110 57000 79271 5.90 6.14 72 The Sisters 4661294 22000000 35564788 75000 121605 5.60 5.71 73 Our Winter 5104424 4600000 5732696 14000 25268 6.80 6.9 74 Physics Department 5133122 259000 18388610 1200 148222 5.90 5.7	65	Jeanne	900055	3 400 000	57025433	11 000	252381	6.70	6.27
68 The Kingdom Against the Robbers 4853046 42000000 53329355 189000 252476 4.40 5.09 69 Honest Divorce 2 4856074 32000000 56615622 114000 194309 5.90 5.39 70 Winter Season 2000121 1800000 2838079 5500 10619 7.40 6.96 71 Smart Masha 4710763 15000000 25819110 57000 79271 5.90 6.14 72 The Sisters 4661294 22000000 35564788 75000 121605 5.60 5.71 73 Our Winter 5104424 4600000 5732696 14000 25268 6.80 6.9 74 Physics Department 5133122 259000 18388610 1200 148222 5.90 5.7	66	I'm Rewinding!	5126797	14000000	31093554	54000	110 591	7.60	6.78
68 Robbers 4853046 42000000 53329355 189000 252476 4.40 5.09 69 Honest Divorce 2 4856074 32000000 56615622 114000 194309 5.90 5.39 70 Winter Season 2000121 1800000 2838079 5500 10619 7.40 6.96 71 Smart Masha 4710763 15000000 25819110 57000 79271 5.90 6.14 72 The Sisters 4661294 22000000 35564788 75000 121605 5.60 5.71 73 Our Winter 5104424 4600000 5732696 14000 25268 6.80 6.9 74 Physics Department 5133122 259000 18388610 1200 148222 5.90 5.7	67	Grisha Subbotin	1410951	4200000	5 267 243	17000	21104	5.20	4.96
70 Winter Season 2000121 1800 000 2838 079 5500 10619 7.40 6.96 71 Smart Masha 4710763 15 000 000 25 819 110 57000 79 271 5.90 6.14 72 The Sisters 4661294 22 000 000 35 564 788 75 000 121 605 5.60 5.71 73 Our Winter 5104424 4600 000 5732 696 14 000 25 268 6.80 6.9 74 Physics Department 5133122 259 000 18 388 610 1 200 148 222 5.90 5.7	68		4853046	42 000 000	53 329 355	189 000	252476	4.40	5.09
71 Smart Masha 4710763 15 000 000 25 819 110 57000 79 271 5.90 6.14 72 The Sisters 4661294 22 000 000 35 564 788 75 000 121 605 5.60 5.71 73 Our Winter 5104424 4600 000 5732 696 14 000 25 268 6.80 6.9 74 Physics Department 5133122 259 000 18 388 610 1 200 148 222 5.90 5.7	69	Honest Divorce 2	4856074	32 000 000	56615622	114000	194309	5.90	5.39
72 The Sisters 4661294 22 000 000 35 564788 75 000 121 605 5.60 5.71 73 Our Winter 5104424 4600 000 5732 696 14000 25 268 6.80 6.9 74 Physics Department 5133122 259 000 18388 610 1200 148 222 5.90 5.7	70	Winter Season	2000121	1800000	2838079	5 500	10619	7.40	6.96
73 Our Winter 5104424 4600 000 5732 696 14000 25 268 6.80 6.9 74 Physics Department 5133122 259 000 18 388 610 1 200 148 222 5.90 5.7	71	Smart Masha	4710763	15 000 000	25 819 110	57000	79 271	5.90	6.14
74 Physics Department 5133122 259 000 18 38 8 6 10 1 2 00 1 4 8 2 22 5 . 9 0 5 . 7	72	The Sisters	4661294	22 000 000	35 564 788	75 000	121 605	5.60	5.71
January Company	73	Our Winter	5104424	4600000	5732696	14000	25 268	6.80	6.9
75 F20 5074907 480000 699433 1700 3363 5.70 5.57	74	Physics Department	5133122	259 000	18 388 610	1200	148 222	5.90	5.7
	75	F20	5074907	480 000	699 433	1700	3 363	5.70	5.57

No.	Name	Q	Actual box office receipts	Expected box office receipts	Actual views	Predicted views	Actual rating	Predicted rating
76	Emperor	5066764	222 000	251 261	621	962	6.20	6.22
77	Pelevin	5195073	1300000	1216460	3 400	4139	6.30	6.15
78	Christmas Trees 9	4958223	585 000 000	346912974	1900000	1514429	4.90	4.64
79	By Touch	4975736	29 000 000	38 459 281	100 000	138 538	5.70	5.67
80	A Pool	4913135	2 900 000	4 488 803	10 000	16 685	5.00	5.12
81	Shadow. Take Gordey	4625021	28 000 000	227049548	100 000	869181	6.30	5.66
82	The Nutcracker and the Magic Flute	1435400	115 000 000	112 315 705	483 000	438 012	7.90	7.07
83	Secret Santa	4901797	84000000	64 549 229	297000	290 577	5.70	5.22
84	On Exhale	4474120	927000	1064510	3 300	4363	6.00	6.04
85	A Wedge Came Together on You	1392734	1700000	1453542	5 500	5 5 5 4	5.20	5.47
86	Balabanov: The Bell Tower. Requiem	5149154	2 400 000	3 414 803	7000	24239	8.10	7.6
87	Nearby	4819385	342 000	530 297	967	1550	5.60	5.9
88	Masha and the Bear in Cinema: 12 Months	5189169	109 000 000	123711842	499 000	461413	8.50	8.03
89	Naughty Boy 2	5023667	518 000 000	204013845	1700000	720 589	6.10	6.39
90	Exes: Happy End	5091614	183 000 000	297062688	539000	1310025	6.00	6.04
91	Chuck & Huck: A Great Adventure	1346357	253 000 000	238 259 209	956000	925 131	6.60	6.72
92	Mira	1227997	343 000 000	436726746	1100000	1628008	7.40	6.52
93	Christmas Trees and Needles	4694773	59 000 000	50819536	185 000	215 306	7.20	6.6
94	Cheburashka	4370148	7020407894	1630133131	23510559	5 909 126	7.30	6.54
95	Music Video Makers	4534033	22 000 000	18 306 527	65 000	100910	6.00	6.15
96	Umka	5230220	9 900 000	17223971	50 000	91658	6.00	6.35
97	Youth	5074901	3 400 000	6 2 5 6 3 8 2	11 000	25 064	6.00	6.57
98	Turbosaurs. Winter Adventures	5236779	21 000 000	23833876	108 000	110 362	6.00	6.21
99	The Path of the Dream	5079139	1600000	1907112	4100	7473	7.30	7.48
100	Camel's Arc	5129254	47000	143 501	206	655	Н/Д	5.99
101	Lily and the Sea / Grand Marin	4478721	1200000	2773415	3 400	8 5 7 1	6.20	6.31
102	Vysotsky: Unknown Pages	1101274	161 000	287034	711	976	Н/Д	5.4
103	Don't Bury Me Without Ivan	5237750	10000000	11 652 379	34000	52 359	8.30	7.78

No.	Name	QI	Actual box office receipts	Expected box office receipts	Actual views	Predicted views	Actual rating	Predicted rating
104	Dear Mom and Dad	5249732	799 000	943 153	3 300	3739	Н/Д	5.75
105	What Men Talk About	5045951	299 000 000	316029793	857000	1758233	6.50	6.54
106	One Real Day	5047485	4500000	11 423 414	16 000	56322	6.50	6.26
107	Liza	1438922	2600000	3189975	11 000	13730	5.80	5.76
108	An Easy Introduction	5245365	1400000	1361926	4400	5 7 6 9	Н/Д	4.58
109	The White Angel of the Tundra	5254553	2 900 000	4453915	10 000	16 843	Н/Д	5.84
110	Free Relationship	4533254	158 000 000	209 632 007	510 000	776 981	6.90	7.04
111	То Ве	4682864	123 000 000	114574015	436 000	489 336	5.50	5.58
112	Snow. Sister. and Wolverine	5129333	707000	1682918	1700	8 202	6.30	6.27
113	The Righteous One	4484927	630 000 000	672 236 093	2100000	2418854	7.60	7.22
114	Naughty	5189350	271 000 000	215114973	806 000	881792	5.40	5.32
115	The Snow Queen: Defrosting	4756225	113 000 000	118 293 013	475 000	518710	7.40	7.43
116	This Love	5246539	1900000	1812341	6500	7420	5.90	5.87
117	Timbre	5034460	135 000	216136	480	957	5.90	6.01
118	Women of Altai	5253702	61 000	145 889	218	656	Н/Д	5.89
119	Bugun-Bylyr 2	5078980	7000000	6 200 515	22 000	27076	Н/Д	5.22
120	Checago	5077317	16000000	13522122	55 000	54 290	6.60	6.78
121	Rabies	1346359	97000000	278004790	303 000	1257287	6.90	6.28
122	Dads Versus Moms	4937051	119 000 000	86 542 200	427000	346151	4.50	4.22
123	Zhenya and Vanya at the Edge of the World	5034461	29 000	143 549	100	713	6.50	6.44
124	Where Is the Border?	5129306	3 400 000	3 6 3 3 8 4 3	26 000	26 229	Н/Д	5.66
125	Nuremberg	905033	328 000 000	428709934	1100000	1990970	6.00	6.25
126	A Healthy Person	2000122	6900000	47 188 942	20 000	220279	7.40	6.82
127	The Unscrupulous in the Countryside	5129252	312 000 000	294513410	876 000	1198275	6.50	6.34
128	The Detector	4694776	3 400 000	6 281 438	11 000	24772	5.00	5.06
129	She's gone crazy	4686066	478 000 000	420677635	1600000	1748092	7.80	7.33
130	Escort Girl	5117304	55 000 000	50 478 520	161 000	223 909	4.60	5.12
131	The Cold Race	5030860	18000	126 849	83	577	5.20	5.07
132	The Holy Archipelago	5101891	11 000 000	6 603 084	38 000	27522	7.70	7.15
133	Medea	5089031	14000000	28 082 456	48 000	125 688	4.50	5.12

					v		0	
No.	Name	<u> </u>	Actual box office receipts	Expected box office receipts	Actual views	Predicted	Actual rating	Predicted rating
134	Towards the Sun. Along the Rows of Corn	4729320	454650603	186629797	1595307	925 087	6.40	6.68
135	Almost Like Everyone Else	5078979	7000000	5 342 655	21 000	20 280	6.40	6.58
136	Sergius Against Evil Spirits: The Sabbath	5126940	13779921	49 570 326	46744	124553	6.90	6.04
137	The Puppeteer	4528911	12 000 000	13600474	48 026	62152	5.90	5.77
138	Let's Talk About It	5246830	12 000	531 577	62	6167	5.80	5.44
139	Cats of the Hermitage	4907586	282172228	144228031	1200747	579 042	5.20	5.52
140	Aita	5104425	25 782 268	11745092	77773	40709	6.90	6.77
141	Lovey-Dovey	4715474	48 009 304	131 558 167	165 120	666 435	4.40	5.08
142	My God! I Feel Your Approach!	5266955	238870	309 805	912	1 299	Н/Д	5.99
143	A Strange House	5140353	18 000 000	12 574 717	61 000	58 847	4.90	4.57
144	Flood	5001203	218 000	1443540	557	7049	5.60	5.84
145	I want to! I will!	4493006	20396022	34036615	75750	117771	6.30	5.79
146	Live broadcast	4400163	881 000	27460151	2634	153902	6.80	6.2
147	The waves	5059142	82 000	1711084	245	10090	5.40	4.61
148	Doctor	5002368	496 626	527667	1411	1654	8.20	7.24
149	Zoskina gas station	5214412	992 542	22 542 776	3 347	116 461	5.40	5.2
150	Russian Cross	4676639	14266106	25 192 400	58 000	95 270	7.50	7.58
151	Challenge	4448519	2135633446	1831151743	6713830	7190055	7.60	7.27
152	Yaga and The Book of Spells	5194326	224 991 304	179621842	943 294	730191	7.80	6.76
153	Amnesty	5255504	27969579	31 987 451	109670	110815	6.00	6.25
154	Treasures of Guerrilla Forest	5264352	4046002	4661213	21659	17202	7.10	6.96
155	Yura. the janitor	5134108	51876565	52737549	177188	162620	6.80	6.81
156	The lesser evil	4920455	155 872	26 033 180	501	111844	7.00	6.99
157	Masquerade	1320002	249 900	803 808	731	2761	5.80	4.77
158	14+ continues	4489519	93 459 371	32 870 284	315 983	132375	4.30	5.11
159	Bulgakov. this world is mine!	5277469	46 970	148747	218	663	7.70	7.79
160	Khitrova. The Sign of Four	5101673	105 619 225	66 927 173	361 396	281 500	7.00	6.41
161	Kaka. directly. another movie	5236765	355 513 600	310246710	1127420	1287789	2.60	3.13
162	Before dawn	5254168	11819913	6411726	39034	27405	6.10	6.35
163	Masha and The Bear in the movie, say "oh!"	5264991	100 179 923	105 054 457	497854	485 502	8.10	8.4

Appendix B (continued)

No.	Name	<u></u>	Actual box office receipts	Expected box office receipts	Actual views	Predicted views	Actual rating	Predicted rating
164	Knots	5238327	162 086	256413	559	1008	5.80	5.81
165	Tin can head	4493055	10888045	12 459 348	40 940	47995	6.90	6.28
166	Sun tastes like	5230216	28 469 452	37 316 323	144074	167361	7.10	6.94
167	Bullfinch	4485219	56233634	54 201 899	185 902	229464	7.10	7.17
168	Through time	1045993	54010222	104828315	200792	429832	5.40	5.29
169	Mikulai	5074908	2377184	2156652	8 107	9878	6.60	6.6
170	Maldives waiting	5079082	57138515	53 508 509	189 574	209671	6.40	5.47
171	Breathing	4715481	114702994	204653433	403 389	928421	6.60	6.16
172	Turbosaur, hello, siren!	5278422	12626919	19862822	66 014	91165	8.00	7.31
173	Status	1346399	173817	242 248	562	951	3.90	4.69
174	Johnny	5307214	124132	260 285	440	962	6.40	6.34
175	Centaur	5235968	123 095 316	95 594 774	400 593	405 597	7.50	6.83
176	Business in Russia	5135024	9 600	128 667	46	617	5.30	5.19
177	To Palych!	5235230	298 541 846	148 807 227	1065 302	615 172	5.60	5.78
178	Baba Yaga saves the world	4536580	544129078	275 566 451	2138645	1227269	5.80	5.26
179	Witness	5332755	14454555	20879076	49 196	62 262	3.00	3.85
180	Like stars	5313842	1972989	3 6 3 9 1 4 8	6 3 4 0	9097	5.80	5.97
181	Quest	5118213	12899066	13 947 447	55 977	62 621	5.60	5.41
182	Ruslan and Ludmila. more than a fairy tale	5356063	110 201 546	133865184	459620	568 500	8.20	7.48
183	Chizhik-Pyzhik returns	5003770	40760444	38 860 073	182 266	167487	7.30	7.07
184	Nina. girl and piano thieves	4667350	13150750	26 628 390	57799	94541	5.40	4.97
185	Concert canceled	5325618	462 037	1126690	1460	5 3 5 7	5.70	5.9
	Total for the period:		21702451281	15374212770	73465643	62363992		

Note: The data is presented as of December 1. 2023. The number of views and the amount of fees may change up, the viewer rating — up and down. An anomaly showing the work of the administrative resource, the selection of rental time and the exclusion of competing films is the film Cheburashka, which, under all other conditions, would have paid off at the box office and received good figures. but taking into account the release on New Year's Eve, in the absence of competition and an active advertising campaign. it showed a high level of fees.