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aBStract
The article presents the analysis findings of the problems and prospects of using the fractal markets theory to 
mathematically predict the price dynamics of assets as part of a financial risk management strategy. The aim of the 
article is to find out the features of value of bank assets and to develop recommendations for assessing financial 
risks based on mathematical methods for forecasting economic processes. Theoretical and empirical research 
methods were used to achieve the aim. The article reveals the features of mathematical modeling of economic 
processes related to asset pricing in a volatile market. It was proved that using financial mathematics in banking 
contributes to the stable development of the economy. Mathematical modeling of the price dynamics of financial 
assets is based on a substantive hypothesis and supported by an adequate apparatus of fractal pair pricing 
models in order to reveal specific market relations of business entities. According to the authors, the prospects 
of using forecast models to minimize the financial risks of derivative financial instruments are positive. The 
authors concluded that the considered methods contribute to managing financial risks and improving forecasts, 
including operations with derivatives. Besides, the studied fractal volatility parameters proved the predictive 
power regarding extreme events in financial markets, such as the bankruptcy of Lehman Brothers investment 
bank in 2008. The relevance of the article is due to the fact that the favorable investment climate and the use of 
modern financing methods largely depend on the effective financial risk management.
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intrODuctiOn
As has been demonstrated globally, the tra-
ditional approach to the study of asset price 
dynamics is based on revealing economic 
trends and mathematical modeling of these 
trends to manage financial risks. For ex-
ample, the classical Black-Scholes-Merton 
model is associated with the efficient market 
hypothesis (EMH) that assumes that the as-
set price is due to multiple random factors. 
The mathematical model of asset price dy-
namics contributes to disclosing its features. 
Using this model minimizes financial risks 
and ensures banking security in a volatile 
market.

Over the past century, financial mathemat-
ics has proved that to be viable, a mathemati-
cal model must be based on a substantive hy-
pothesis and supported by an adequate math-
ematical apparatus. Models that do not have 
these two components, “unpaired” models, 
turn out to be unviable.

For example, the mathematical appara-
tus used by Bachelier in 1900 in his dynamic 
pricing model was ahead of his time, and the 
Bachelier model remained unclaimed for more 
than 60 years. After the efficient market hy-
pothesis was developed, the Bachelier model 
became the basis for the modern pricing mod-
els.

In a sense, the opposite is exemplified by 
the fractal market hypothesis that appeared 
simultaneously with the efficient market hy-
pothesis [1]. However, the mathematical ap-
paratus of this theory (a model based on frac-
tional Brownian motion) “did not keep up” 
with the substantial concept [2]. The lack of 
an adequate mathematical fractal dynamics 
pricing model at the time of the fractal mar-
ket hypothesis formation prevented the for-
mation of a full theory.

The attempts to revise the classical theory 
are due to the development peculiarities of 
market relations and the observable volatil-
ity of asset price dynamics under the influ-
ence of stylized facts of market participants 
[3], namely:

•  excess volatility of asset returns, which 
can not be estimated by traditional methods 
of economic processes; 

•  heavy tails: the distribution of returns, 
indicating asymmetry of the market, which 
contributes to the growth of risks and the 
likelihood of extreme events;

•  autocorrelation in returns, where homo-
geneous assets can exhibit the absence of de-
pendence of profitability increments and the 
presence of a significant long-term memory 
of economic processes that can find manifes-
tation in homogeneous processes of market 
relations

•  volatility clustering, where the jumps in 
profitability tend to be followed by jumps of 
the opposite sign, significant for the market 
and asset price dynamics, which contribute to 
the probability of significant losses;

•  volume/volatility correlation: trading 
volume is positively correlated with market 
volatility. Moreover, trading volume and vola-
tility show the same type of “long-term mem-
ory” behavior.

The study of these phenomena began in 
the 1980s of the XX century [4]. However, 
mathematical modeling of individual stylized 
facts was first carried out by researchers at 
the beginning of the XXI century [5–7]. Cur-
rently, representatives of various scientific 
schools have shown that market development 
features are directly related to risk assess-
ment and the need to use predictive math-
ematical models for adequate asset manage-
ment solutions aimed at the stable manifesta-
tion of economic processes. It is important to 
note that a universal mathematical model of 
market asset price dynamics has not yet been 
found. For example, conducted within the 
European Central Bank in 2014 and based on 
the data analysis of the developed economies 
of the EU countries, the studies are aimed 
at finding a theoretical model that explains 
the market relations phenomena [8]. It is not 
possible to use the considered approach to 
predict the processes of emerging markets. 
Moreover, the study of cryptocurrency price 
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dynamics by the representatives of the Eu-
ropean mathematical school in 2017 showed 
the features of forecasting the use of assets in 
cyberspace [9].

In this  regard, the observation made 
in 2019 in the field of stochastic financial 
mathematics is interesting [10]. Analyzing 
the stylized facts of economic development 
on a large statistical material, the authors 
found that emerging markets behave simi-
lar to prediction markets, which confirms 
the role of general and specialized informa-
tion in banking. An attempt to connect the 
stylized facts of market phenomena and the 
behavior of economic agents involves multi-
agent models, including those with artificial 
intelligence, where market participants im-
plement a relatively rational asset manage-
ment strategy aimed at maintaining profit 
and risk management [11–13]. However, criti-
cisms against multi-agent forecasting mod-
els, especially in emerging markets, remain 
valid [14].

In complex forecasting models of a highly 
volatile non-traditional market, the use of 
“non-standard” models is promising. Thus, 
the main asset pricing theorem was proved for 
markets where mathematical modeling was 
not possible [15].

In 2018, representatives of the University 
of Jerusalem introduced the notion of fully in-
complete markets and attempted mathemati-
cal prediction of an asset hedging strategy 
[16]. To calculate asset price dynamics and 
manage financial risks, it is necessary to use 
comprehensive information about real prices 
and virtual derivative financial instruments.

The variety of methods and models used 
in modern financial mathematics shows 
that a unifying concept that generalizes the 
classical one and explains the stylized facts of 
market relations is not represented in modern 
science. The most systematic and consistent 
explanation of stylized facts of economic de-
velopment is obtained within the concept of 
a fractal market, involving the dependence of 
the predicted value of asset price dynamics on 

the history of market development. This article 
analyzes the concept.

MODeLS BaSeD  
On SeLf-SiMiLar  

prOceSSeS 
The key assumption of the fractal market hy-
pothesis is self-similarity of dynamic price 
series of assets. As a rule, the price dynamics 
of financial market assets is modeled using 
self-similar processes. This is supported by 
statistical observations and economic argu-
ments [17].

Self-similarity is a consequence of a large 
number of market participants with differ-
ent investment horizons and acting in the 
same conditions. Moreover, market par-
ticipants behave  in the same way with re-
spect to their investment horizon, providing 
invariance of market characteristics relative 
to the time scale of asset use. The Hurst ex-
ponent H [17] is the statistical characteristic 
of scale invariance. Its value ranges from 0 
to 1. For Brownian motion, underlying the 
classical models of the volatile market, the 
value of the Hurst exponent equals to 0.5. 
A value H  in the range 0.5–1 indicates per-
sistent (trend-stable) dynamics in the time 
series. A value in the range 0 – 0.5 indicates 
antipersistent dynamics in the time series 
and demonstrates the property of returning 
to the average value. 

The mathematical apparatus to describe 
self-similar random processes was proposed 
by A.N. Kolmogorov. Methods for obtaining 
accurate numerical market predictions re-
lated to asset pricing have been developing 
for about half a century. However, no decisive 
results such as the Black-Scholes model have 
been received yet. The reason is that the use 
of fractional Brownian motion for asset price 
modeling in the stock market faces a difficult 
problem. Unlike classical mathematical mod-
eling, models based on the fractional Brown-
ian motion have arbitrage opportunities that 
cannot be described by the rational pricing 
theory.
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For a long time, researchers believed that 
the existence of arbitrage opportunities was 
inextricably linked with autocorrelation 
and the memory of financial time series. A 
deeper penetration into the mathematics of 
the fractal market shows that arbitrage, au-
tocorrelation, and self-similarity are due to 
various factors. Work [18] provides examples 
of Gaussian random processes that have the 
same long-term memory as the processes 
based on fractional Brownian motion with 
the Hurst exponent greater than 0.5, and at 
the same time lead to arbitrage-free market 
models. To build the price model, work [18] 
used the idea of   a moving average, which suc-
cessfully connects the mathematical appara-
tus with market realities understood by the 
financier.

Nevertheless, most researchers find it 
more promising to use precisely the fraction-
al Brownian motion to build a market model. 
Replacing Ito integration by Wick integration 
can solve the availability problem of arbi-
trage opportunities [19, 20]. Experience has 
shown that, modified integration has still no 
convincing economic interpretation. There-
fore, it is advisable to be careful when using 
mathematical modeling with Wick integra-
tion.

The solution to minimizing financial risks 
by mathematical modeling of pricing finan-
cial derivatives lies in complete accounting of 
the characteristics of trading financial instru-
ments in a particular financial market. The 
fractal market with proportional transaction 
costs is arbitrage-free. The exact pricing fi-
nancial derivatives in such a market is funda-
mentally impossible; it is only possible to es-
tablish more or less accurate price limits that 
do not allow arbitration. However, the fractal 
market hypothesis attracts the participants by 
the opportunity to minimize financial risks of 
asset management.

Classical predictive models suggest that a 
random process with underlying Brownian mo-
tion describes the risky asset price dynamics. 
Namely, let ( )S t   be the price of the risky asset 

at time t . Then the return for time interval t∆  
is as follows:

           

( ) ( )
( ) ( ),

S t t S t
t W t

S t

+∆ −
= µ∆ +σ∆  (1)

where 
2

2
µ+

σ  —  is the expected return; σ  —  is 

the return volatility; ∆W(t) = W(t +∆t) – W(t); 
( )W t  —  is the so-called Wiener random process 

(Brownian motion). Value ( )W t∆  is considered 
normally distributed with an average value of 0 
and dispersion t∆ . It is assumed that for differ-
ent values of t , increments ( )W t∆  are inde-
pendent (unless the time intervals overlap).

Wiener processes belong to self-similar 
random processes. In general, a random mar-
ket process is self-similar if a change in the 
time scale leads to a change in the spatial 
scale, and the probabilistic characteristics 
of the process remain unchanged. More pre-
cisely, random process ( )�X t , 0t ≥ , is called 
self-similar if for any 0a >  we can find 0�b >
so that random processes ( )X at  and ( )bX t  
have the same probabilistic characteristics. If 
parameter b  is also related to parameter a  so 
that Hb a=  for some constant H  for all 0a > , 
constant H  is called the Hurst exponent and 
it is said that the process is self-similar with 
the Hurst exponent H . For the Wiener pro-
cess, the Hurst exponent equals 0.5.

Levy processes are used in the models if 
the changes in return at disjoint time in-
tervals are considered independent. Models 
based on Levy processes provide a good ap-
proximation of real price series, sometimes 
much better than classical models [21]. They 
allow considering such features of financial 
time series as asymmetry and heavy tails of 
probability distributions, and thereby more 
adequately assess risks (for example, ignor-
ing heavy tails leads to underestimation of 
risks associated with extreme events). This is 
achieved by the fact that Levy processes are 
determined by a larger number of parameters 
than Wiener processes. Typically, four pa-
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rameters are used. In some way, two of them 
are similar to the parameters of the Wiener 
process: μ is the shift parameter (similar to 
the average value that may be determined in 
the Levy process); σ is the scale parameter 
(similar to the average deviation that may 
not be determined the Levy process). The 
other two parameters allow considering the 
features of time series not captured by Wie-
ner processes: β is the skewness parameter 
(allows considering the asymmetry in the 
differences between the probability distribu-
tions in the loss zone and in the zone of in-
flated expectations).

Work [21] showed that using Levy pro-
cesses to describe the returns of world stock 
indices provides satisfactory results. At the 
same time, it is possible to consider the dy-
namic features of financial series, missing in 
classical models. Similar results are obtained 
regarding the Russian market [22].

Predictive ability is an important property 
of the model. To be considered qualitative 
and predictively valuable, the model should 
be sufficiently stable with respect to small 
fluctuations in the initial data and relatively 
small shifts along the time axis. In this re-
gard, increasing number of parameters allows 
for a more accurate calibration on histori-
cal data, but the stability of the estimates is 
problematic. Data analysis shows that models 
with a normal distribution show good results 
for periods of 1–2 months. With a forecast 
period of more than 200 days, both classical 
models and those based on Levy processes 
are not entirely reliable. Finally, for periods 
of 100–150 days, models based on Levy pro-
cesses provide the best result [23].

The use of non-classical models for the 
Russian market is more significant. For ex-
ample, for the DJA index, the distributions in 
the corresponding Levy processes are close 
to normal, and both are consistent with em-
pirical data. It is no longer the case for the 
RTS index due to high transaction costs (we 
also include the costs due to insufficient li-
quidity).

Fractional Brownian motion is a basic ex-
ample of a self-similar random process with 
dependent increments. The dependence of 
increments makes it possible to simulate 
processes with long-term memory using 
fractional Brownian motion. The phenomena 
related to the trend formation are explained 
within the framework of such models.

Applying financial time series models 
based on self-similar processes can face 
fundamental difficulties, regardless of the 
processes involved: with dependent or inde-
pendent increments. In the classical Black-
Scholes-Merton model, pricing is based on 
the fact that this model has an equivalent 
martingale probability measure for price 
stochastic processes.  Substantially, this 
measure can be interpreted as some rational 
forecast, and the price of a derivative instru-
ment is determined considering this forecast 
with respect to its future prices. In general, 
there is an infinite family of “rational fore-
casts” for self-similar random processes with 
independent increments. Accordingly, there 
appears an interval of prices interpreted as 

“fair”. Sometimes, but not always, it is pos-
sible to estimate the boundaries of these in-
tervals. These boundaries are often shallow. 
In models using fractional Brownian motion, 
with the Hurst exponent other than 0.5, there 
is no “rational forecast” (equivalent martin-
gale measure), and there are arbitrage oppor-
tunities. Building pricing models within such 
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models is only possible considering the fea-
tures of the real financial market functioning. 
Transaction costs are among these features.

In classic models, the price of a deriva-
tive is determined by replicating strategies. 
In the presence of transaction costs, an exact 
replication may be too expensive. It is then 
replaced by a similar one, obtained as a result 
of solving the problem of stochastic control 
by dynamic programming methods. The so-
lution to this problem in many cases is too 
complicated (even considering today’s com-
puting power). Facilitations are achieved by 
narrowing the class of acceptable investment 
strategies, for example, portfolio rebalanc-
ing can only be possible at fixed intervals. In 
this case, it is possible to obtain more or less 
acceptable estimates of the trading bounda-
ries using upper and lower hedging [24]. Work 
[25] presents fundamentally important re-
sults of the estimates of the trading bounda-
ries obtained under general assumptions. The 
authors managed to connect trading volumes, 
liquidity and dynamic parameters of price 
movement and to get estimates allowing for 
optimal trading strategies [26]. These works 
make relevant the issue of a consistent use of 
the so-called market time in models. Techni-
cally, this concept was used in many works. 
The results obtained in these works open up 
new possibilities for the Tobin tax. In our 
opinion, the studies indicate quite clearly 
that in financial market models it is advis-
able to link time with financial events, and 
not just with the rotation of the Earth around 
the Sun [25, 26].

To manage financial risks in difficult mar-
ket conditions when forecasting asset price 
dynamics, using the fractal modeling method 
is promising.

fractiOnaL BrOwnian  
MOtiOn anD Market  

MODeLS
Formally, fractional Brownian motion with 
the Hurst exponent H, 0 <H <1, is a stochas-
tic process ( ){ }HB t , where random variables 

( )HB t  are normally distributed for all times 
t  and ( )� 0 0HB = , the mean value of ( )� HB t   is 
0 for any �t , and the covariance of ( )HB t  and 

( )HB s  is as follows:

  
( ) ( ) ( )22 21

.
2

HH H H HE B t B s t s t s  = + − −    (2)

In an equivalent way, we can assume that 
the variance ( )HB t  is proportional to 2Ht  (in 
the case of the Wiener process, the disper-
sion is proportional to t ).

The trajectory of fractional Brownian mo-
tion is a fractal object with a fractal dimen-
sion 2D H= − . 

By means of fractional Brownian motion, it 
is possible to build market models with many 
important properties, whose manifestation 
is demonstrated by real markets. We will call 
such models fractal markets for short.

One of the most important and studied is 
a model similar to the classical (1), where the 
risky asset price dynamics is described as fol-
lows: 

         

( ) ( )
( ) ( ).HS t t S t

t B t
S t

+∆ −
= µ∆ +σ∆  (3)

The behavior of the autocovariance yield 
function with the lag τ is similar to the behav-
ior of the function ( ) 2 22 2 1 HH H −− τ  (we take a 
period equal to 1). For all values of the Hurst 
exponent, autocorrelation tends to 0 with an 
increase in the time lag.

At 0.5H > , autocorrelation is positive and 
decreases more slowly, the higher the value 
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of H is. For example, at H = 0.8, autocorrela-
tion remains quite noticeable (approximately 
0.2) even at τ = 10. This case corresponds to 
persistence.

At H <0.5, autocorrelation becomes nega-
tive at τ <1, reaches its minimum value, and 
then tends to zero with increasing lag. This 
case corresponds to antipersistency.

These properties of the Hurst exponent are 
associated with crisis phenomena. Empirical 
observations allow us to conclude that a de-
crease in the fractal dimension of the price 
trajectory precedes large changes in the mar-
kets. The fractal characteristics of markets in 
the period up to 2014 were analyzed in work 
[27]. With this in mind, studying the dynam-
ics of the Hurst exponent becomes relevant. 
This problem was studied in works [28, 29], 
as well as the concept of the fractality index 

μ associated with the Hurst exponent by the 
relation 1 .H ≈ −µ

The fractality index dynamics allows a sta-
tistically reliable description and, due to this 
can be used for forecasting. Work [30] pro-
posed promising econometric approaches to 
describing the dynamics of the Hurst expo-
nent.

fractaLitY 
inDeX

Values characterizing the fractal structure of 
the market are used to model volatility. The 
asset price is seen as a continuous stochastic 
process. The amplitude A (δ) = h (δ) – l (δ) is 
used as a measure of volatility over an inter-
val of length δ, where h (δ) is the maximum 
and l (δ) is the minimum price in this inter-
val.
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100 200 300 400 500 600 700 800

MU_SIMPLE_32

Fig. 1. Graph of ( )tµ
Source: compiled by the authors.
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Two values 0δ  and 
cδ , are selected, with 

0c nδ = δ . Two values cδ  is usually called the 
characteristic scale. At time t, the interval 
[ ],�ct t−δ  is considered. Let δ be a divisor of 
a characteristic scale and a multiple of the 
minimum. The total of the amplitudes at these 
intervals is denoted by ( )V δ . The regression 
is considered

           
( ) ( )log log .V = α−µδ δ  (4)

In [28] it was shown that regression (4) has 
a very high coefficient of determination, that 
almost coincides with 1, in a rather wide range 
(the authors considered the ratio of the char-
acteristic and the minimum scale from 8 to 
1024). Thus, the estimate of μ is practically 

independent of the choice of divisors, and we 
can consider the dynamic quantities ( )0, , ctµ δ δ  
and  ( )0, , ctα δ δ . As a rule, 0 1δ = , and dynamic 
quantities are denoted by ( )

c
tδµ  and  ( )

c
tδα .

The function μ (unlike α) does not de-
pend on the base of the logarithm in equal-
ity (4) and is an intrinsic characteristic of 
the fractal structure of the financial series. 
In work [28], the value μ is called the frac-
tality index. When the minimum scale tends 
to 0, the fractality index tends to the value 
D — 1, where D  is the fractal dimension of 
the price process. Moreover, the conver-
gence turns out to be very fast (quick ap-
proach to asymptotics), which allows us to 
estimate the fractal dimension using very 
few observations.

 Fig. 2. Graph of ( )2R ω .
Source: compiled by the authors.
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As a consequence of the very high coeffi-
cient of determination of regression (4), we 
can use simplified estimates of the parameters 

0µ , 0α  (assuming 0 1δ = ):

  ( ) ( )0log log
c cs cV Vδ δµ = δ − δ ; 

  ( )0log .
cs Vδα = δ   (5)

which gives a decomposition of volatility on 
a characteristic scale:

        ( )log .
c c s sVδ δ = α −µ ≈ α−µ   (6)

 
 uSinG fractaL  

cHaracteriSticS  
tO fOrecaSt 
VOLatiLitY

Work [29] considers regression models of 
volatility components α and μ that can be 
used to forecast future dynamics of the vola-
tility of the foreign exchange market. While 
the future value is predicted in most mod-
els, but, as a rule, over a rather short inter-
val, the fractal model allows predicting only 
the growth direction for α and μ, but over a 
sufficiently long interval (from one to eight 
months).

An empirical  fact  is  used to build an 
econometric model: the function ( )tµ   has 
a quite clearly defined quasicyclic structure 
(Fig. 1). It should be noted that the quasicy-
clicity of fractal characteristics (in particular, 
the most dynamic series of Hurst) was not-
ed and discussed at a qualitative level ear-
lier [1, 2]. Since the quantity μ has a much 
faster asymptotics than the estimate of the 
R/S-analysis, it is natural to expect that the 
quasicyclicity of the function μ (t) is more 
pronounced.

Thus, it is logical to use periodic functions 
to model the fractality index:

     
 ( ) ( ) ( )

1

sin cos .
k

i i i i
i

t a t b t
=

 µ = ω + ω ∑   (7)

The econometric model corresponding to 
(7) is constructed as follows. The equation is 
considered

      ( ) ( ) ( ) ( )1 2sin cos .t x b t b t tµ = + ω + ω + ε  (8)

The frequency ω runs from 0 to 0.1 with 
0.0001 per step. For each value of ω, the coef-
ficient of determination of regression is de-
termined (8). The resulting function ( )2R ω  has 
pronounced extrema. It can be obtained for any 
segment of the time series [ ]0 1,��T T .  A typical 
graph is shown in Fig. 2.

The smallest maximum with the highest 
determination coefficient is the main, trend-
ing frequency. Besides, there are frequencies 
of quasicycles —  usually three or four.

Thus, both the extreme frequencies and the 
corresponding values   of the determination 
coefficients turn out to be functions of two 
parameters: 0T  —  the starting point and the 
length 1 0T T∆ = −  of the interval on which the 
econometric model (window width) is built. In 
this case, the picture shown in Fig. 2, at large 
intervals of the values   of the parameters 0T , 
∆  does not change qualitatively and changes 
little quantitatively, which confirms the qua-
sicyclic nature of the structure. At the same 
time, at some values   of 0T , phase transitions 
take place. The main trend frequency in (8) 
bifurcates with the subsequent “overflow” —  
the attenuation of the initial “hump” and the 
growth of a new one.

These ideas were used in work [30] to fore-
cast trends in the ruble exchange rate. At the 
same time, the regressions had a rather high 
coefficient of determination: 2 ~ 0.7 0.75R ÷
. Backtesting the model showed that the di-
rection prediction of the trend is correct in 
60–70% of cases. The 2008 crisis found good 
agreement with the model.

Works [31, 32] presented data on the val-
ues of the Hurst exponent in the stock mar-
ket, based on the analysis of voluminous sta-
tistical material. These data generally con-
firm the indicated pattern. In this regard, 
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observed in 2019, the increase in the values   
of the Hurst exponent in the domestic oil 
sector is alarming. Typical for the Russian 
stock market, the values of the Hurst exponent 
close to 0.6 (Aeroflot —  0.58–0.63; Gazprom —  
0.53–060; Sberbank —  0.57–0.64; Rosneft —  
0.53–0.57 in 2014–2018) were replaced in the 
first half of 2019 by the higher ones (Tatneft —  
0.70; Surgutneftegas —  0.77; Rosneft —  0.72).

We refer to the study by a scientific school 
of the Utrecht University (Netherlands) that 
estimated the “normal” values of the Hurst 
exponent for various sectors: information tech-
nology —  0.50–0.67; finance —  0.38–0.62; raw 
materials sector —  0.38–0.63 [33].

There is no martingale measure in the frac-
tal market. Therefore, there are arbitrage op-
portunities associated with the features of the 
Ito integral. Mathematically, the situation of 
forecasting price dynamics can be corrected 
by using Wick integration [19]. However, this 
integration method has not yet received an 
economic interpretation that is adequate to 
modern conditions of market relations. This 
approach can be easily explained by a discrete 
approximation of fractional Brownian motion, 
which serves as the main tool for calculations. 
A brief description of the discrete approxima-
tion follows next.

Let the time interval [0; T] be divided into 
n equal intervals. For each n, we can calculate 
the coefficients ( )

,
n

l ik , 1, ,l n= … , 1, ,� ,i l= …  so that 
the sums

    
( ) ( )

,
1

� ,
l

nH
l i i

i

B t k
=

≈ ξ∑   (9)

where 
iξ  — are random variables taking one 

of the two values { }1;1−  approximate the val-
ues for T

t l
n

= ⋅  in the interval [ ]0;T .

Then,

    
( ) ( )1, 1 1 1, � ,

1

�
l

H
l l l l i l i i

i

B t k k k+ + + +
=

∆ = ξ + − ξ∑   (10)

[we omit the index n in the notation ( )nk  
from (9)]. Equation (10) allows approximating 
the risky asset price in the fractal market at 
sufficiently large n.

Assuming that 
T

t
n

∆ =  and  ( )0 0S S= , we 
have:

  
             ( ) ( )0 11 11 ;S t S t k∆ = +µ∆ + ξ  (11)

       ( ) ( ) ( )
2,2 2

2,1 1,1 1

1
2 ... .

t k
S t S t

k k

+µ∆ + ξ + 
 ∆ = ∆
 + − ξ 

 (12)

Ito integration corresponds to the usual 
multiplication of brackets. Wick integration 
corresponds to a multiplication where the terms 
containing 2

iξ ,  are discarded. For example, 
when calculating ( )2S t∆  the term ( )11 2,1 1,1k k k− , 
obtained by term-by-term multiplication of (11) 
and (12), at 2

1 1,ξ =  should be discarded. There 
is still no economically rational explanation 
why such terms should be discarded. We should 
be cautious about the results obtained by Wick 
integration.

cOncLuSiOnS
Let us dwell on the results associated with 
pricing in markets with transaction costs. 
Studies [25, 34 suggested an approach to 
describe optimal strategies in markets with 
transaction costs.
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Under general assumptions, the propor-
tion of capital invested in the risk component 
should be within the boundaries

         
2−

ρ−λ
π =

γσ
 and 

2
� ,+

ρ+λ
π =

γσ
  (13)

where ρ  — is the excess return; γ  —  is the 
relative risk aversion; ε  —  is the spread be-
tween supply and demand prices, and the 
quantity λ is the following

   
( ) ( )

1/3
22 2 1/3

* *

3
1

4
O

 
λ = γσ π −π ε + ε γ 

  (14)

with * 2
.

ρ
π =

γσ

For example, the calculations according 
to formulas (13) and (14) for ordinary shares 
of Sberbank at the beginning of 2014 yielded 
the values 45.6%−π = , 48.2%+π = . The liquid-
ity premium calculated by the methodology 
of work [25] equaled 0.04%. For less attrac-
tive and liquid assets, the buy and sell limits 
were much lower, and the liquidity premium 
increased sharply. For example, it was 0.15% 
for JSCB Primorye.

A significant number of recent studies have 
been devoted to modeling volatility using frac-
tional Brownian motion. It is possible to ex-
plain the effects of short-term and long-term 
memory, the paradox of the “volatility smile” 
and some other features in terms of the con-
structed models [35].

The concept of Rough Fractional Stochastic 
Volatility (RFSV) became widespread [36, 37]. 
The RFSV concept generalizes models used for 

over 20 years (see [38]). In the standard sto-
chastic volatility model described by equations

     

( ) ( )( ) ( ) ( ) ( )1, ;
dS t

t S t dt t dW t
dt

= µ +σ  (15)

( )( ) ( )( ) ( ) ( )2ln ln ,d t k t dt dW tσ = θ− σ + γ   (16)

it is proposed to use the fractional Brownian 
motion instead of the Wiener process ( ) ( )2W t .

Research in this area was stimulated by the 
empirically revealed stable pattern: the vola-
tility dynamics is fractal by nature, the Hurst 
exponent for process ( ) ( )2W t  equals 0.1 for 
fixed-income instruments. This Hurst expo-
nent corresponds to a very high variability of 
volatility with a tendency to return to its aver-
age values. This observation can significantly 
improve volatility forecasts, and, most impor-
tantly, much more accurately than with other 
models, describe possible risks and implied 
volatility of asset price dynamics. The proposed 
approach is also promising in the formation 
of forecast models of asset price dynamics of 
derivative financial instruments [37]. Moreover, 
the fractal volatility parameters demonstrate 
predictive power regarding extreme events in 
the financial sector. An example is the collapse 
of Lehman Brothers and other US investment 
banks in 2008, which caused the global finan-
cial and economic crisis [36].

The presented justification of the feasibility 
of using fractal models of asset price dynamics 
and their practical application in the financial 
sector can help minimize risks and strengthen 
the stable development of market relations.
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