Preview

Finance: Theory and Practice

Advanced search

Cryptocurrency Market Development: Hurst Method

https://doi.org/10.26794/2587-5671-2020-24-3-81-91

Abstract

The aim of this work is to study the pricing in the cryptocurrency market and applying cryptocurrencies by the Bank of Russia for its monetary policy. The research objectives are to identify the cyclical nature of price dynamics, to study market maturity and potential risks that have a long-term positive relationship with the financial stability of the cryptocurrency market. The author uses the Hurst method with the Amihud illiquidity measure to study the resistance of four cryptocurrencies (Bitcoin, Litecoin, Ripple and Dash) and their evolution over the past five years. The study results in the author’s conclusion that the cryptocurrency market has entered a new stage of development, which means a reduced possibility to have excess profits when investing in the most liquid cryptocurrencies in the future. However, buying new high-risk tools provides opportunities for speculative income. The author concludes that illiquid cryptocurrencies exhibit strong inverse anti-persistence in the form of a low Hurst exponent. A trend investing strategy may help obtain abnormal profits in the cryptocurrency market. The Bank of Russia could partially apply digital currency to implement monetary policy, which would soften the business cycle and control the inflation. If Russia accepts the law ‘’On Digital Financial Assets’’ and legalizes cryptocurrencies after the economic crisis caused by the COVID-19 pandemic, the Bank of Russia might act as a lender of last resort and offer crypto loans.

About the Author

A. Yu. Mikhailov
Financial University
Russian Federation

Aleksei Yu. Mikhailov — Cand. Sci. (Econ.), Deputy Director Research Center of Monetary Relations

Moscow



References

1. Henry C. S., Huynh K. P., Nicholls G. Bitcoin awareness and usage in Canada. Journal of Digital Banking. 2018;2(4):311–337.

2. Böhme R., Christin N., Edelman B., Moore T. Bitcoin: Economics, technology, and governance. Journal of Economic Perspectives. 2015;29(2):213–238. DOI: 10.1257/jep.29.2.213

3. Antonopoulos A. M. Mastering Bitcoin: Unlocking digital cryptocurrencies. Sebastopol, CA: O’Reilly Media, Inc.; 2014.

4. Kroll J. A., Davey I. C., Felten E. W. The economics of Bitcoin mining, or Bitcoin in the presence of adversaries. In: 12 th Workshop on the economics of information security — WEIS2013 (Washington, DC, June 11–12, 2013). Washington, DC: Georgetown University; 2013. URL: https://www.econinfosec.org/archive/weis2013/papers/KrollDaveyFeltenWEIS2013.pdf

5. Javarone M. A., Wright C. S. From Bitcoin to Bitcoin cash: A network analysis. In: CryBlock’18: Proc. 1 st Workshop on cryptocurrencies and Blockchains for distributed systems (Munich, June 15, 2018). New York: Association for Computing Machinery; 2018:77–81. DOI: 10.1145/3211933.3211947

6. Swan M. Blockchain: Blueprint for a new economy. Sebastopol, CA: O’Reilly Media, Inc.; 2015.

7. Kristoufek L. What are the main drivers of the Bitcoin price? Evidence from wavelet coherence analysis. PLoS ONE. 2015;10(4). DOI: 10.1371/journal.pone.0123923

8. Ciaian P., Rajcaniova M, Kancs D. The economics of BitCoin price formation. Applied Economics. 2016;48(19):1799–1815. DOI: 10.1080/00036846.2015.1109038

9. ElBahrawy A., Alessandretti L., Kandler A., Pastor-Satorras R., Baronchelli A. Evolutionary dynamics of the cryptocurrency market. Royal Society Open Science. 2017;4(11). DOI: 10.1098/rsos.170623

10. Guo T., Antulov-Fantulin N. Predicting short-term Bitcoin price fluctuations from buy and sell orders. 2018. URL: https://www.researchgate.net/publication/323141771_Predicting_short-term_Bitcoin_price_fluctuations_from_buy_and_sell_orders

11. Evans D. Economic aspects of Bitcoin and other decentralized public-ledger currency platforms. CoaseSandor Institute for Law & Economics Working Paper. 2014;(685). URL: https://chicagounbound.uchicago.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=2349&context=law_and_economics

12. Krause M. Bitcoin: Implications for the developing world. CMC Senior Theses Paper. 2016;(1261). URL: https://pdfs.semanticscholar.org/95b1/b3059752517e0da4ff82b1777707b8bb4f67.pdf

13. Reid F., Harrigan M. An analysis of anonymity in the Bitcoin system. In: Altshuler Y., Elovici Y. et al., eds. Security and privacy in social networks. New York: Springer-Verlag; 2013:197–223.

14. Tasca P., Hayes A., Liu S. The evolution of the Bitcoin economy: Extracting and analyzing the network of payment relationships. Journal of Risk Finance. 2018;19(2):94–126. DOI: 10.1108/JRF-03–2017–0059

15. Foley S., Karlsen J., Putnin T. J. Sex, drugs, and Bitcoin: How much illegal activity is financed through cryptocurrencies? Review of Financial Studies. 2019;32(5):1798–1853. DOI: 10.1093/rfs/hhz015

16. Lischke M., Fabian B. Analyzing the Bitcoin network: The first four years. Future Internet. 2016;8(1). DOI: 10.3390/fi8010007

17. Androulaki E., Karame G. O., Roeschlin M., Scherer T., Capkun S. Evaluating user privacy in Bitcoin. In: Sadeghi A. R., ed. International conference on financial cryptography and data security — FC2013 (Okinawa, Apr. 1–5, 2013). Berlin, Heidelberg: Springer-Verlag; 2013:34–51. URL: https://eprint.iacr.org/2012/596.pdf

18. Nyangarika А., Mikhaylov А., Richter U. Influence oil price towards economic indicators in Russia. International Journal of Energy Economics and Policy. 2019;9(1):123–129. DOI: 10.32479/ijeep.6807

19. Nyangarika А., Mikhaylov А., Richter U. Oil price factors: Forecasting on the base of modified autoregressive integrated moving average model. International Journal of Energy Economics and Policy. 2019;9(1):149–159. DOI: 10.32479/ijeep.6812

20. Mikhaylov A. Volatility spillover effect between stock and exchange rate in oil exporting countries. International Journal of Energy Economics and Policy. 2018;8(3):321–326. URL: http://zbw.eu/econisarchiv/bitstream/handle/11159/2130/1028136102.pdf?sequence=1&isAllowed=y

21. Koshy P., Koshy D., McDaniel P. An analysis of anonymity in Bitcoin using P2P network traffic. In: Christin N., Safavi-Naini R., eds. International conference on financial cryptography and data security FC2014 (Christ Church, Barbados, Mar. 3–7, 2014). Berlin, Heidelberg: Springer-Verlag; 2014:469–485. URL: https://www.freehaven.net/anonbib/cache/bitcoin-p2p-anon.pdf

22. Biryukov A., Khovratovich D., Pustogarov I. Deanonymisation of clients in Bitcoin P2P network. In: Proc. 2014 ACM SIGSAC conference on computer and communications security. New York: Association for Computing Machinery; 2014:15–29. DOI: 10.1145/2660267.2660379

23. Decker C., Wattenhofer R. Bitcoin transaction malleability and MtGox. In: Kutyłowski M., Vaidya J., eds. 19 th European symposium on research in computer security — ESORICS2014 (Wroclaw, Sept. 7–11, 2014). Cham: Springer-Verlag; 2014:313–326. DOI: 10.1007/978–3–319–11212–1_18

24. Nick J. D. Data-driven de-anonymization in Bitcoin. Master’s thesis. 2015. URL: https://jonasnick.github.io/papers/thesis.pdf

25. Puri V. Decrypting Bitcoin prices and adoption rates using Google search. CMC Senior Theses Paper. 2016;(1418). URL: https://scholarship.claremont.edu/cgi/viewcontent.cgi?article=2379&context=cmc_theses

26. Neudecker T., Hartenstein H. Could network information facilitate address clustering in Bitcoin? In: Brenner M., Rohloff K. et al., eds. International conference on financial cryptography and data security FC2017 (Sliema, Malta, Apr. 3–7, 2017). Cham: Springer-Verlag; 2017:155–169. URL: https://fc17.ifca.ai/bitcoin/papers/bitcoin17-final11.pdf

27. Doll A., Chagani S., Kranch M., Murti, V. btctrackr: Finding and displaying clusters in Bitcoin. 2014. URL: https://www.cs.princeton.edu/~arvindn/teaching/spring-2014-privacy-technologies/btctrackr.pdf

28. Remy C., Rym B., Matthieu L. Tracking Bitcoin users activity using community detection on a network of weak signals. In: Cherifi C., Cherifi H. et al., eds. 6th International conference on complex networks and their applications — COMPLEX NETWORKS2017 (Lyon, Nov. 29. Dec. 01, 2017). Cham: SpringerVerlag; 2017:166–177. DOI: 10.1007/978–3–319–72150–7_14

29. Manning C. D., Raghavan P., Schütze H. Introduction to information retrieval. New York: Cambridge University Press; 2008.

30. Tinbergen J. Shaping the world economy: Suggestions for an international economic policy. New York: The Twentieth Century Fund; 1962.

31. Goldberger A. S. The interpretation and estimation of Cobb-Douglas functions. Econometrica. 1968;36(3/4):464–472. DOI: 10.2307/1909517

32. Bergstrand J. H. The gravity equation in international trade: Some microeconomic foundations and empirical evidence. The Review of Economics and Statistics. 1985;67(3):474–481. DOI: 10.2307/1925976

33. Lewer J. J., Van den Berg H. A gravity model of immigration. Economics Letters. 2008;99(1):164–167. DOI: 10.1016/j.econlet.2007.06.019

34. Carrère C. Revisiting the effects of regional trade agreements on trade flows with proper specification of the gravity model. European Economic Review. 2006;50(2):223–247. DOI: 10.1016/j.euroecorev.2004.06.001

35. Silva J. S., Tenreyro S. The log of gravity. The Review of Economics and Statistics. 2006;88(4):641–658. DOI: 10.1162/rest.88.4.641

36. Hasti T., Tibshirani R., Friedman J. The elements of statistical learning: Data mining, inference, and prediction. 1 st ed. New York: Springer-Verlag; 2001.


Review

For citations:


Mikhailov A.Yu. Cryptocurrency Market Development: Hurst Method. Finance: Theory and Practice. 2020;24(3):81-91. https://doi.org/10.26794/2587-5671-2020-24-3-81-91

Views: 6010


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5671 (Print)
ISSN 2587-7089 (Online)