Проблема эндогенности в корпоративных финансах: теория и практика
https://doi.org/10.26794/2587-5671-2022-26-3-64-84
Аннотация
Эндогенность может вызывать значительное смещение оценок коэффициентов, вплоть до изменения знака влияния. Это приводит к противоречивым результатам в исследованиях, что также мешает адекватно проверять отдельные гипотезы и теории в корпоративных финансах (КФ). А практикам, например, консультантам по оценке стоимости компании, такие проблемы с моделями мешают получать максимально достоверные оценки в интересах заказчика. Цель исследования — систематизировать методы борьбы с эндогенностью в КФ и проиллюстрировать подход борьбы с нею. В работе приведены причины возникновения эндогенности с эконометрической точки зрения, с примерами из КФ, а также эконометрические методы борьбы с ней. В результате системного обзора литературы авторы показали, что в исследованиях, связанных с КФ, для борьбы с эндогенностью чаще всего используют динамические модели оценки панельных данных, в частности методом Бланделла-Бонда. Заключение, сделанное в рамках обзора литературы, авторы проверили эмпирически. Для обнаружения эндогенности использован тест Хаусмана, тест на эндогенность и анализ корреляционной матрицы, включающей сохраненные остатки регрессии. В ходе пошагового нивелирования эндогенности авторы пришли к выводу, что метод Бланделла-Бонда не всегда является оптимальным инструментом для борьбы с эндогенностью в КФ, как и регрессия с фиксированным эффектом. В ходе оценки модели стоимости капитала и устранения эндогенности наиболее подходящим оказался двухшаговый метод наименьших квадратов (IV 2SLS). Кроме этого, были усовершенствованы оценки модели стоимости капитала, анализирующей влияние нефинансовой отчетности.
Ключевые слова
JEL: C23, C26, G30
Об авторах
З. В. СелезневаРоссия
Зинаида Владимировна Селезнева — стажер-исследователь лаборатории по финансовой инженерии и риск-менеджменту, аспирант Школы финансов факультета экономических
наук.
Москва
М. С. Евдокимова
Россия
Мария Сергеевна Евдокимова — преподаватель и аспирант Школы финансов факультета экономических наук.
Москва
Список литературы
1. Tucker G. M. On problems of corporate finance. The American Journal of Economics and Sociology. 1948;7(2):235–236. DOI: 10.1111/J.1536–7150.1948.TB 00679.x
2. Wintoki M.B., Linck J.S., Netter J.M. Endogeneity and the dynamics of internal corporate governance. Journal of Financial Economics. 2012;105(3):581–606. DOI: 10.1016/j.jfineco.2012.03.005
3. Gippel J., Smith T., Zhu Y. Endogeneity in accounting and finance research: Natural experiments as a stateof-the-art solution. Abacus. 2015;51(2):143–168. DOI: 10.1111/abac.12048
4. Barros L.A.B.C., Bergmann D. R., Henrique Castro F., da Silveira A. D.M. Endogeneity in panel data regressions: Methodological guidance for corporate finance researchers. Revista Brasileira de Gestao de Negocios. 2020;22:437–461. DOI: 10.7819/rbgn.v22i0.4059
5. Flannery M.J., Hankins K.W. Estimating dynamic panel models in corporate finance. Journal of Corporate Finance. 2013;19:1–19. DOI: 10.1016/j.jcorpfin.2012.09.004
6. Banik A., Chatterjee C. Ownership pattern and governance-performance relation: Evidence from an emerging economy. Global Business Review. 2021;22(2):422–441. DOI: 10.1177/0972150920966699
7. Molina C.A. Are firms underleveraged? An examination of the effect of leverage on default probabilities. The Journal of Finance. 2005;60(3):1427–1459. DOI: 10.1111/j.1540–6261.2005.00766.x
8. Chen C.-W., Lin J.B., Yi B. CEO duality and firm performance: An endogenous issue. Corporate Ownership and Control. 2008;6(1):58–65. DOI: 10.22495/cocv6i1p6
9. Poletti Hughes J. R&D and dividend payments as determinants of corporate value in the UK: Empirical evidence after controlling for endogeneity. International Journal of Managerial Finance. 2008;4(1):76–91. DOI: 10.1108/17439130810837393
10. Zhou T., Li W.-A. Board governance and managerial risk taking: Dynamic analysis. The Chinese Economy. 2016;49(2):60–80. DOI: 10.1080/10971475.2016.1142823
11. Malik Q.A., Hussain S., Ullah N., Waheed A., Naeem M., Mansoor M. Simultaneous equations and endogeneity in corporate finance: The linkage between institutional ownership and corporate financial performance. The Journal of Asian Finance, Economics and Business. 2021;8(3):69–77. DOI: 10.13106/ jafeb.2021.vol8.no3.0069
12. Harada K., Nguyen P. Ownership concentration and dividend policy in Japan. Managerial Finance. 2011;37(4):362–379. DOI: 10.1108/03074351111115313
13. Жукова Н.Ю., Меликова А.Э. Социальная ответственность бизнеса: усиление стоимости бренда и влияние на финансовые показатели компании. Финансы: теория и практика. 2021;25(1):84–102. DOI: https://doi.org/10.26794/2587–5671–2021–25–1–84–102
14. Мартынова М. Раскрытие информации о климате как фактор инвестиционной привлекательности российских компании. Московский Экономический Журнал. 2021;(5):365–379. DOI: 10.24411/2413– 046Х 2021–10277
15. Поляков К.Л., Полякова М.В., Самойленко С.В. Моделирование влияния долговой нагрузки на эффективность деятельности субъектов предпринимательства. Вопросы статистики. 2016;(9):17–29. DOI: 10.34023/2313–6383–2016–0–9–17–29
16. Zahid M., Rahman H.U., Khan M., Ali W., Shad F. Addressing endogeneity by proposing novel instrumental variables in the nexus of sustainability reporting and firm financial performance: A step-by-step procedure for non-experts. Business Strategy and the Environment. 2020;29(8):3086–3103. DOI: 10.1002/bse.2559
17. Cheng Q., Lo K. Insider trading and voluntary disclosures. Journal of Accounting Research. 2006;44(5):815–848. DOI: 10.1111/j.1475–679X.2006.00222.x
18. Gul F.A., Hutchinson M., Lai K.M.Y. Gender-diverse boards and properties of analyst earnings forecasts. Accounting Horizons. 2013;27(3):511–538. DOI: 10.2308/acch 50486
19. Kim C.-J., Nelson C.R. Estimation of a forward-looking monetary policy rule: A time-varying parameter model using ex post data. Journal of Monetary Economics. 2006;53(8):1949–1966. DOI: 10.1016/j. jmoneco.2005.10.017
20. Coles J.L., Lemmon M.L., Meschke J.F. Structural models and endogeneity in corporate finance: The link between managerial ownership and corporate performance. Journal of Financial Economics. 2012;103(1):149– 168. DOI: 10.1016/j.jfineco.2011.04.002
21. Li F. Endogeneity in CEO power: A survey and experiment. Investment Analysts Journal. 2016;45(3):149–162. DOI: 10.1080/10293523.2016.1151985
22. Grieser W.D., Hadlock C.J. Panel-data estimation in finance: Testable assumptions and parameter (in) consistency. Journal of Financial and Quantitative Analysis. 2019;54(1):1–29. DOI: 10.1017/S 0022109018000996
23. Киршин И.А. Эмпирический анализ детерминант структуры капитала фирмы. Финансы: теория и практика. 2017;21(2):106–112. DOI: 10.26794/2587–5671–2017–21–2–106–112
24. Mohammad W.M.W., Wasiuzzaman S. Environmental, social and governance (ESG) disclosure, competitive advantage and performance of firms in Malaysia. Cleaner Environmental Systems. 2021;2:100015. DOI: 10.1016/J.CESYS.2021.100015
25. Alareeni B.A., Hamdan A. ESG impact on performance of US S&P 500-listed firms. Corporate Governance. 2020;20(7):1409–1428. DOI: 10.1108/CG 06–2020–0258
26. Dang V.A., Kim M., Shin Y. In search of robust methods for dynamic panel data models in empirical corporate finance. Journal of Banking & Finance. 2015;53:84–98. DOI: 10.1016/j.jbankfin.2014.12.009
27. Ullah S., Akhtar P., Zaefarian G. Dealing with endogeneity bias: The generalized method of moments (GMM) for panel data. Industrial Marketing Management. 2018;71:69–78. DOI: 10.1016/j.indmarman.2017.11.010
28. Tarchouna A., Jarraya B., Bouri A. How to explain non-performing loans by many corporate governance variables simultaneously? A corporate governance index is built to US commercial banks. Research in International Business and Finance. 2017;42:645–657. DOI: 10.1016/j.ribaf.2017.07.008
29. Boneva L., Linton O. A discrete-choice model for large heterogeneous panels with interactive fixed effects with an application to the determinants of corporate bond issuance. Journal of Applied Econometrics. 2017;32(7):1226–1243. DOI: 10.1002/jae.2568
30. Kremer S., Bick A., Nautz D. Inflation and growth: New evidence from a dynamic panel threshold analysis. Empirical Economics. 2013;44(2):861–878. DOI: 10.1007/s00181–012–0553–9
31. Ahn S.C., Lee Y.H., Schmidt P. Panel data models with multiple time-varying individual effects. Journal of Econometrics. 2013;174(1):1–14. DOI: 10.1016/j.jeconom.2012.12.002
32. Chudik A., Pesaran M.H. Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. Journal of Econometrics. 2015;188(2):393–420. DOI: 10.1016/j. jeconom.2015.03.007
33. Pesaran M.H., Zhou Q. Estimation of time-invariant effects in static panel data models. Econometric Reviews. 2018;37(10):1137–1171. DOI: 10.1080/07474938.2016.1222225
34. Su L., Yang Z. QML estimation of dynamic panel data models with spatial errors. Journal of Econometrics. 2015;185(1):230–258. DOI: 10.1016/j.jeconom.2014.11.002
35. Campbell R.C., Nagel G.L. Private information and limitations of Heckman’s estimator in banking and corporate finance research. Journal of Empirical Finance. 2016;37:186–195. DOI: 10.1016/j.jempfin.2016.03.007
36. Hausman J.A. Specification tests in econometrics. Econometrica. 1978;46(6):1251–1271. DOI: 10.2307/1913827
37. Wooldridge J. M. Selection corrections for panel data models under conditional mean independence assumptions. Journal of Econometrics. 1995;68(1):115–132. DOI: 10.1016/0304–4076(94)01645-G
38. Zhang Y., Qin G., Zhu Z., Zhang J. Robust estimation in linear regression models for longitudinal data with covariate measurement errors and outliers. Journal of Multivariate Analysis. 2018;168:261–275. DOI: 10.1016/j. jmva.2018.07.015
39. Qin G., Zhang J., Zhu Z. Simultaneous mean and covariance estimation of partially linear models for longitudinal data with missing responses and covariate measurement error. Computational Statistics & Data Analysis. 2016;96:24–39. DOI: 10.1016/j.csda.2015.11.001
40. Chen H.-Y., Lee A.C., Lee C.-F. Alternative errors-in-variables models and their applications in finance research. Quarterly Review of Economics and Finance. 2015;58:213–227. DOI: 10.1016/j.qref.2014.12.002
41. Wall T.D., Michie J., Patterson M., Wood S.J., Sheehan M., Clegg C.W., West M. On the validity of subjective measures of company performance. Personnel Psychology. 2004;57(1):95–118. DOI: 10.1111/j.1744–6570.2004. tb02485.x
42. Podsakoff P.M., MacKenzie S.B., Lee J.-Y., Podsakoff N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology. 2003;88(5):879– 903. DOI: 10.1037/0021–9010.88.5.879
43. Tehseen S., Ramayah T., Sajilan S. Testing and controlling for common method variance: A review of available methods. Journal of Management Sciences. 2017;4(2):146–175. DOI: 10.20547/jms.2014.1704202
44. Carrasco M., Doukali M. Efficient estimation using regularized jackknife IV estimator. Annals of Economics and Statistics. 2017;(128):109–149. DOI: 10.15609/annaeconstat2009.128.0109
45. Schaffer M.E. XTIVREG2: Stata module to perform extended IV/2SLS, GMM and AC/HAC, LIML and k-class regression for panel data models. 2020.
46. Qian H., Schmidt P. The asymptotic equivalence between the iterated improved 2sls estimator and the 3sls estimator. Econometric Reviews. 1997;16(4):441–457. DOI: 10.1080/07474939708800398
47. Reed W.R. On the practice of lagging variables to avoid simultaneity. Oxford Bulletin of Economics and Statistics. 2015;77(6):897–905. DOI: 10.1111/obes.12088
48. Roodman D.M. How to do Xtabond2: An introduction to difference and system GMM in Stata. The Stata Journal. 2009;9(1):86–136. DOI: 10.1177/1536867X0900900106
49. Hahn J., Hausman J., Kuersteiner G. Long difference instrumental variables estimation for dynamic panel models with fixed effects. Journal of Econometrics. 2007;140(2):574–617. DOI: 10.1016/j.jeconom.2006.07.005
50. Huang R., Ritter J.R. Testing theories of capital structure and estimating the speed of adjustment. Journal of Financial and Quantitative Analysis. 2009;44(2):237–271. DOI: 10.1017/S 0022109009090152
51. Bruno G.S.F. Approximating the bias of the LSDV estimator for dynamic unbalanced panel data models. Economics Letters. 2005;87(3):361–366. DOI: 10.1016/j.econlet.2005.01.005
52. Ezeani E., Salem R., Kwabi F., Boutaine K., Bilal, Komal B. Board monitoring and capital structure dynamics: evidence from bank-based economies. Review of Quantitative Finance and Accounting. 2022;58(2):473–498. DOI: 10.1007/S 11156–021–01000–4
53. Lartey T., Danso A., Boateng A. Co-opted boards and capital structure dynamics. International Review of Financial Analysis. 2021;77:101824. DOI: 10.1016/J.IRFA.2021.101824
54. Badayi S.A., Matemilola B.T., Bany-Ariffin A.N., Theng L.W. Does corporate social responsibility influence firm probability of default? International Journal of Finance & Economics. 2021;26(3):3377–3395. DOI: 10.1002/IJFE.1966 З.В.
55. Schadewitz H., Niskala M. Communication via responsibility reporting and its effect on firm value in Finland. Corporate Social Responsibility and Environmental Management. 2010;17(2):96–106. DOI: 10.1002/csr.234
56. de Klerk M., de Villiers C. The value relevance of corporate responsibility reporting: South African evidence. Meditari Accountancy Research. 2012;20(1):21–38. DOI: 10.1108/10222521211234200
57. Iatridis G.E. Environmental disclosure quality: Evidence on environmental performance, corporate governance and value relevance. Emerging Markets Review. 2013;14:55–75. DOI: 10.1016/j.ememar.2012.11.003
58. Fatemi A., Fooladi I., Tehranian H. Valuation effects of corporate social responsibility. Journal of Banking & Finance. 2015;59:182–192. DOI: 10.1016/j.jbankfin.2015.04.028
59. Oshika T., Saka C. Sustainability KPIs for integrated reporting. Social Responsibility Journal. 2017;13(3):625– 642. DOI: 10.1108/SRJ 07–2016–0122
60. de Villiers C., Venter E.R., Hsiao P.-C.K. Integrated reporting: background, measurement issues, approaches and an agenda for future research. Accounting & Finance. 2017;57(4):937–959. DOI: 10.1111/acfi.12246
61. García-Sánchez I.-M., Noguera-Gámez L. Integrated information and the cost of capital. International Business Review. 2017;26(5):959–975. DOI: 10.1016/j.ibusrev.2017.03.004
62. Albuquerque R., Koskinen Y., Zhang C. Corporate social responsibility and firm risk: Theory and empirical evidence. Management Science. 2019;65(10):4451–4469. DOI: 10.1287/mnsc.2018.3043
63. Bhuiyan M.B.U., Nguyen T.H.N. Impact of CSR on cost of debt and cost of capital: Australian evidence. Social Responsibility Journal. 2020;16(3):419–430. DOI: 10.1108/SRJ 08–2018–0208
64. Yeh C.-C., Lin F., Wang T.-S., Wu C.-M. Does corporate social responsibility affect cost of capital in China? Asia Pacific Management Review. 2020;25(1):1–12. DOI: 10.1016/j.apmrv.2019.04.001
65. Manchiraju H., Rajgopal S. Does corporate social responsibility (CSR) create shareholder value? Evidence from the Indian Companies Act 2013. Journal of Accounting Research. 2017;55(5):1257–1300. DOI: 10.1111/1475–679X.12174
66. Dhaliwal D.S., Li O.Z., Tsang A., Yang Y.G. Voluntary nonfinancial disclosure and the cost of equity capital: The initiation of corporate social responsibility reporting. The Accounting Review. 2011;86(1):59–100. DOI: 10.2308/accr.00000005
67. El Ghoul S., Guedhami O., Kwok C.C.Y., Mishra D.R. Does corporate social responsibility affect the cost of capital? Journal of Banking & Finance. 2011;35(9):2388–2406. DOI: 10.1016/j.jbankfin.2011.02.007
68. Boujelbene M.A., Affes H. The impact of intellectual capital disclosure on cost of equity capital: A case of French firms. Journal of Economics, Finance and Administrative Science. 2013;18(34):45–53. DOI: 10.1016/S 2077–1886(13)70022–2
69. Zhou S., Simnett R., Green W. Does integrated reporting matter to the capital market? Abacus. 2017;53(1):94– 132. DOI: 10.1111/abac.12104
70. Fama E. F., French K.R. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics. 1993;33(1):3–56. DOI: 10.1016/0304–405X(93)90023–5
71. Fama E.F., French K.R. The cross-section of expected stock returns. The Journal of Finance. 1992;47(2):427– 465. DOI: 10.1111/j.1540–6261.1992.tb04398.x
72. Evdokimova M.S., Kuzubov S.A. Non-financial reporting and the cost of capital in BRICS countries. Higher School of Economics. Basic Research Program Working Paper. 2021;(83/FE). URL: https://wp.hse.ru/data/202 1/06/25/1430000555/83FE 2021.pdf
73. Breush T.S., Pagan A.R. A simple test for heteroscedasticity and random coefficient variation. Econometrica. 1979;47(5):1287–1294. DOI: 10.2307/1911963
74. Park H.M. Practical guides to panel data modeling: A step by step analysis using stata. Niigata: International University of Japan; 2011. 53 p. URL: https://www.iuj.ac.jp/faculty/kucc625/method/panel/panel_iuj.pdf
75. Drukker D.M. Testing for serial correlation in linear panel-data models. The Stata Journal. 2003;3(2):168–177. DOI: 10.1177/1536867X0300300206
76. Baum C.F., Schaffer M.E., Stillman S. Enhanced routines for instrumental variables/generalized method of moments estimation and testing. The Stata Journal. 2007;7(4):465–506. DOI: 10.1177/1536867X0800700402
77. Stock J.H., Yogo M. Testing for weak instruments in linear IV regression. In: Andrews D.W.K., Stock J.H., eds. Identification and inference for econometric models: Essays in honor of Thomas Rothenberg. Cambridge, New York: Cambridge University Press; 2005:80–108. DOI: 10.1017/CBO9780511614491.006
Рецензия
Для цитирования:
Селезнева З.В., Евдокимова М.С. Проблема эндогенности в корпоративных финансах: теория и практика. Финансы: теория и практика/Finance: Theory and Practice. 2022;26(3):64-84. https://doi.org/10.26794/2587-5671-2022-26-3-64-84
For citation:
Selezneva Z.V., Evdokimova M.S. Endogeneity Problem in Corporate Finance: Theory and Practice. Finance: Theory and Practice. 2022;26(3):64-84. https://doi.org/10.26794/2587-5671-2022-26-3-64-84