Risk Modeling and Connectedness Across Global and Industrial US Fintech Stock Market: Evidence from the COVID‑19 Crisis
https://doi.org/10.26794/2587-5671-2025-29-2-6-19
Abstract
The main purpose of this paper is to test the performance of GARCH models in estimating and forecasting VaR (value at risk) of the US Fintech stock market from July 20, 2016, to December 31, 2021. In addition, this study examines the impact of COVID-19 on the risk spillover between the adequate VaR series of the US global KFTX index and the five Fintech industries. Specifically, we compare different VaR estimates (862 in-sample daily returns) and predictions (550 out-of-sample daily returns) of several GARCH model specifications under a normal and Student-t distribution with 1% and 5% significance. The Backtesting results indicate that I-GARCH with Student-t distribution is a good model for estimating and forecasting VaR of the US Fintech stock market before and during COVID-19. Moreover, the total connectedness results suggest that global and each Fintech industry increases significantly under turbulent market conditions. Given these considerations, this paper provides policymakers and regulators with a better understanding of risk in the Fintech industry without inhibiting innovation.
Keywords
JEL: C87, F47, G11, G18
About the Authors
O. GharbiTunisia
Oumayma Gharbi — PhD in Finance, Faculty of Economics and Management of Sfax, Laboratory URECA
Sfax
Competing Interests:
The authors have no conflicts of interest to declare.
M. Boujelbène
Tunisia
Mouna Boujelbène — PhD, Prof. of Finance, Faculty of Economics and Management of Sfax, Laboratory URECA
Sfax
Competing Interests:
The authors have no conflicts of interest to declare.
R. Zouari
Tunisia
Ramzi Zouari — PhD in Engineering, National School of Engineers
Sfax
Competing Interests:
The authors have no conflicts of interest to declare.
References
1. Rauter R., Globocnik D., Perl-Vorbach E., Baumgartner R. J. Open innovation and its effects on economic and sustainability innovation performance. Journal of Innovation & Knowledge. 2019;4(4):226-233. DOI: 10.1016/j.jik.2018.03.004
2. David-West O., Iheanachor N., Umukoro I. O. Sustainable business models for the creation of mobile financial services in Nigeria. Journal of Innovation & Knowledge. 2020;5(2):105-116. DOI: 10.1016/j.jik.2019.03.001
3. Chaudhry S.M., Ahmed R., Huynh T. L.D., Benjasak C. Tail risk and systemic risk of finance and technology (FinTech) firms. Technological Forecasting and Social Change. 2022;174:121191. DOI: 10.1016/j.techfore.2021.121191
4. Alexakis C., Eleftheriou K., Patsoulis P. COVID-19 containment measures and stock market returns: An international spatial econometrics investigation. Journal of Behavioral and Experimental Finance. 2021;29:100428. DOI: 10.1016/j.jbef.2020.100428
5. Haldar A., Sethi N. The effect of country-level factors and government intervention on the incidence of COVID-19. Asian Economics Letters. 2020;1(2). DOI: 10.46557/001c.17804
6. Scherf M., Matschke X., Rieger M. O. Stock market reactions to COVID-19 lockdown: A global analysis. Finance Research Letters. 2022;45:102245. DOI: 10.1016/j.frl.2021.102245
7. Diebold F., Yilmaz K. Better to give than to receive: Predictive measurement of volatility spillovers (with discussion). International Journal of Forecasting. 2012;28(1):57-66. DOI: 10.1016/j.ijforecast.2011.02.006
8. Assaf A. Value-at-risk analysis in the MENA equity markets: Fat tails and conditional asymmetries in return distributions. Journal of Multinational Financial Management. 2015;29:30-45. DOI: 10.1016/j.mulfin.2014.11.002
9. Tabasi H., YousefiV., Tamosaitiene J., Ghasemi F. Estimating conditional value at risk in the Tehran stock exchange based on the extreme value theory using GARCH models. Administrative Sciences. 2019;9(2):40. DOI: 10.3390/admsci9020040
10. Emenogu N. G., Adenomon M. O., Nweze N. O. On the volatility of daily stock returns of Total Nigeria Plc: Evidence from GARCH models, value-at-risk and backtesting. Financial Innovation. 2020;6(1):18. DOI: 10.1186/s40854-020-00178-1
11. Ben Ayed W., Fatnassi I., Ben Maatoug A. Selection of Value-at-Risk models for MENA Islamic indices. Journal of Islamic Accounting and Business Research. 2020;11(9):1689-1708. DOI: 10.1108/JIABR-07-2019-0122
12. Amiri H., Najafi Nejad M., Mousavi S. M. Estimation of Value at Risk (VaR) based on Levy-GARCH models: Evidence from Tehran Stock Exchange. Journal of Money and Economy. 2021;16(2):165-186. DOI: 10.29252/jme.16.2.165
13. Naimy V., Haddad O., Fernandez-Aviles G., El Khoury R. The predictive capacity of GARCH-type models in measuring the volatility of crypto and world currencies. PloS One. 2021;16(1): e0245904. DOI: 10.1371/journal.pone.0245904
14. Shaik M., Padmakumari L. Value-at-risk (VAR) estimation and backtesting during COVID-19: Empirical analysis based on BRICS and US stock markets. Investment Management and Financial Innovations. 2022;19(1):51-63. DOI: 10.21511/imfi.19(1).2022.04
15. Mrkvicka T., Krasnicka M., Friebel L., Volek T., Rolfnek L. Backtesting the evaluation of Value-at-Risk methods for exchange rates. Studies in Economics and Finance. 2023;40(1):175-191. DOI: 10.1108/SEF-06-2021-0248
16. Bollerslev T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics. 1986;31(3):307-327. DOI: 10.1016/0304-4076(86)90063-1
17. Engle R. F., Bollerslev T. Modelling the persistence of conditional variances. Econometric Reviews. 1986;5(1):1-50. DOI: 10.1080/07474938608800095
18. Lee G. G., Engle R. F. A permanent and transitory component model of stock return volatility. Department of Economics. University of California San Diego. Working Paper. 1993. ZDB-ID 2437630-9.
19. Kupiec P. Techniques for verifying the accuracy of risk measurement models. Journal of Derivatives.1995;3:73-84. URL: https://www.pm-research.com/content/iijderiv%3A%3A%3A3%3A%3A%3A2%3A%3A%3A73.full.pdf?implicit-login=true&sigma-token=oykoniLW0yOWjxOcyGDew0Uh6d7b1iWMm_Eeg4y-LxY
20. Christoffersen P. F. Evaluating interval forecasts. International Economic Review.1998;39(4):841-862. DOI: 10.2307/2527341
21. Koop G., Pesaran M. H., Potter S. M. Impulse response analysis in nonlinear multivariate models. Journal of Econometrics. 1996;74(1):119-147. DOI: 10.1016/0304-4076(95)01753-4
22. Pesaran H. H., Shin Y. Generalized impulse response analysis in linear multivariate models. Economics Letters. 1998;58(1):17-29. DOI: 10.1016/S0165-1765(97)00214-0
23. Engle R.F. Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica. 1982;50(4):987-1007. DOI: 10.2307/1912773
24. Ljung G. M., Box G. E.P. On a measure of lack of fit in time series models. Biometrika. 1978;65(2):297-303. DOI: 10.1093/biomet/65.2.297
25. Dickey D. A., Fuller W. A. Likelihood ratio statistics for autoregressive time series with unit root. Econometrica. 1981;49(1):1057-1072. DOI: 10.2307/1912517
26. Chu J., Chan S., Nadarajah S., Osterrieder J. GARCH modelling of cryptocurrencies. Journal of Risk and Financial Management. 2017;10(4):17. DOI: 10.3390/jrfm10040017
27. Goodell J. W. COVID-19 and finance: Agendas for future research. Finance Research Letters. 2020,35:101512. DOI: 10.1016/j.frl.2020.101512
28. Baker S. R., Bloom N., Davis J. S., Kost K., Sammon M., Viratyosin T. The unprecedented stock market reaction to COVID-19. The Review of Asset Pricing Studies. 2020;10(4):742-758. DOI: 10.1093/rapstu/raaa008
Review
For citations:
Gharbi O., Boujelbène M., Zouari R. Risk Modeling and Connectedness Across Global and Industrial US Fintech Stock Market: Evidence from the COVID‑19 Crisis. Finance: Theory and Practice. 2025;29(2):6-19. https://doi.org/10.26794/2587-5671-2025-29-2-6-19