Preview

Finance: Theory and Practice

Advanced search

Predicting Financial Market Volatility with Modern Model and Traditional Model

https://doi.org/10.26794/2587-5671-2025-29-2-154-165

Abstract

The major topic investigates how classical methods (ARCH and GARCH) and well-known machine learning algorithms, support vector regression, and hybrid methods. This paper aims to predict and forecast volatility to develop a two-stage forecasting approach the volatility of the Amman Stock Exchange Index (ASE) effectively. Additionally, the effectiveness of the machine learning techniques’ selection and utilization of information in stock data is evaluated. Methods the semiparametric estimating technique known as support vector regression (SVR) has been widely used for the prediction of volatility in financial time series. By integrating SVR with the GARCH model (GARCH-SVR) application with various kernels (Radial Basis Kernel Function (RBF), Polynomial Kernel Function (PF), and linear Kernel Function (lF)). The suggested learning approaches are compared to two well-known statistical time series models, Autoregressive Conditional Heteroskedasticity (ARCH) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH), in order to assess the assertion that they can properly anticipate ASE volatility. To compare their results, RMSE is employed as an error metric. There is evidence that the GARCH-SVR model performs best for predicting volatility time series, and classical volatility model techniques have an enormous predictive performance better than machine learning models.

About the Author

R. G. Aldeki
Al-Sham Private University
Syrian Arab Republic

Raneem Ghazi Aldeki — PhD, Assist. Prof., Department of Banks and Financial Institutions

Damascus



References

1. Brownlees C. T., Gallo G. M. Comparison of volatility measures: A risk management perspective. Journal of Financial Econometrics. 2010;8(1):29-56. DOI: 10.1093/jjfinec/nbp009

2. Jorion P. Predicting volatility in the foreign exchange market. The Journal of Finance. 1995;50(2):507-528. DOI: 10.nn/j.1540-6261.1995.tb04793.x

3. Brailsford T. J., Faff R. W. An evaluation of volatility forecasting techniques. Journal of Banking & Finance. 1996;20(3):419-438. DOI: 10.1016/0378-4266(95)00015-1

4. McMillan D., Speight A., Apgwilym O. Forecasting UK stock market volatility. Applied Financial Economics. 2000;10(4):435-448. DOI: 10.1080/09603100050031561

5. Choudhry T., Wu H. Forecasting ability of GARCH vs Kalman filter method: Evidence from daily UK time- varying beta. Journal of Forecasting. 2008;27(8):670-689. DOI: 10.1002/for.1096

6. Chen S., Hardle W. K., Jeong K. Forecasting volatility with support vector machine-based GARCH model. Journal of Forecasting. 2010;29(4):406-433. DOI: 10.1002/for.1134

7. Li Y. Q., Tian M. A semi-supervised regression algorithm based on co-training with SVR-KNN. Advanced Materials Research. 2014;926:2914-2918. DOI: 10.4028/www.scientific.net/AMR.926-930.2914

8. Santamaria-Bonfil G., Frausto-Solis J., Vazquez-Rodarte I. Volatility forecasting using support vector regression and a hybrid genetic algorithm. Computational Economics. 2015;45(1):111-133. DOI: 10.1007/s10614-013-9411-x

9. Huang C., Gao F., Jiang H. Combination of biorthogonal wavelet hybrid kernel OCSVM with feature weighted

10. approach based on EVA and GRA in financial distress prediction. Mathematical Problems in Engineering. 2014. DOI: 10.1155/2014/538594

11. Cao L. J., Tay F. E.H. Support vector machine with adaptive parameters in financial time series forecasting. IEEE Transactions on Neural Networks. 2003;14(6):1506-1518. DOI: 10.1109/TNN.2003.820556

12. Vapnik V. N. Statistical learning theory. New York, NY: John Wiley & Sons, Inc.; 1997. 768 p.

13. Rosillo R., Giner J., de la Fuente D. The effectiveness of the combined use of VIX and support vector machines on the prediction of S&P 500. Neural Computing and Applications. 2014;25(2):321-332. DOI: 10.1007/s00521-013-1487-7

14. Perez-Cruz F., Afonso-Rodriguez J.A., Giner J. Estimating GARCH models using support vector machines. Quantitative Finance. 2003;3(3):163-172. DOI: 10.1088/1469-7688/3/3/302

15. Li N., Liang X., Li X. L., Wang C., Wu D. S.D. Network environment and financial risk using machine learning and sentiment analysis. Human and Ecological Risk Assessment. 2009;15(2):227-252. DOI: 10.1080/10807030902761056

16. Bildirici M., Ersin 0. 0. Support vector machine GARCH and neural network GARCH models in modeling conditional volatility: An application to Turkish financial markets. SSRNElectronic Journal. 2012. DOI: 10.2139/ssrn.2227747

17. Peng Y., Albuquerque P. H.M., de Sa J. M.C., Padula A. J.A., Montenegro M. R. The best of two worlds: Forecasting high-frequency volatility for cryptocurrencies and traditional currencies with support vector regression. Expert Systems with Applications. 2018;97:177-192. DOI: 10.1016/j.eswa.2017.12.004

18. Mandelbrot B. New methods in statistical economics. Journal of Political Economy. 1963;71(5):421-440. DOI: 10.1086/258792

19. Fama E. F. The behavior of stock-market prices. The Journal of Business. 1965;38(1):34-105. DOI: 10.1086/294743

20. Bollerslev T., Chou R. Y., Kroner KF. ARCH modeling in finance: A review of the theory and empirical evidence. Journal of Econometrics. 1992;52(1-2):5-59. DOI: 10.1016/0304-4076(92)90064-X

21. Bollerslev T., Engle R. F., Nelson D. B. ARCH models. In: Engle R. F., McFadden D., eds. Handbook of econometrics. Amsterdam: Elsevier; 1994;4:2959-3038. DOI: 10.1016/S 1573-4412(05)80018-2

22. Bollerslev T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics. 1986;31(3):307-327. DOI: 10.1016/0304-4076(86)90063-1

23. Ou P., Wang H. Financial volatility forecasting by least square support vector machine based on GARCH, EGARCH and GJR models: Evidence from ASEAN stock markets. International Journal of Economics and Finance. 2010;2(1):51-64. DOI: 10.5539/ijef.v2n1p51

24. Bezerra P. C.S., Albuquerque P. H.M. Volatility forecasting via SVR-GARCH with mixture of Gaussian kernels. Computational Management Science. 2017;14(2):179-196. DOI: 10.1007/s10287-016-0267-0

25. Sun H., Yu B. Forecasting financial returns volatility: A GARCH-SVR model. Computational Economics. 2020;55(2):451-471. DOI: 10.1007/s10614-019-09896-w

26. Nou A., Lapitskaya D., Eratalay M. H., Sharma R. Predicting stock return and volatility with machine learning and econometric models: A comparative case study of the Baltic stock market. SSRNElectronic Journal. 2021. DOI: 10.2139/ssrn.3974770

27. Rousan R., Al-Khouri R. Modeling market volatility in emerging markets: The case of daily data in Amman stock exchange 1992-2004. International Journal of Applied Econometrics and Quantitative Studies. 2005;2(4):99-118. URL: https://www.usc.gal/economet/Journals3/ijaeqs/ijaeqs248.pdf (accessed on 07.03.2025).

28. Engle R. F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica. 1982;50(4):987-1007. DOI: 10.2307/1912773

29. Hansen P. R., Lunde A. A forecast comparison of volatility models: Does anything beat a GARCH (1,1)? Journal of Applied Econometrics. 2005;20(7):873-889. DOI: 10.1002/jae.800

30. Alpaydin E. Introduction to machine learning. Cambridge, MA: The MIT Press; 2020. 719 p.

31. Boser B. E., Guyon I. M., Vapnik V. N. A training algorithm for optimal margin classifiers. In: Proc. 5th Annu. workshop on computational learning theory (COLT’92). (Pittsburgh, PA, July 27-29, 1992). New York, NY: Association for Computing Machinery; 1992:144-152. DOI: 10.1145/130385.130401

32. Qu H., Zhang Y. A new kernel of support vector regression for forecasting high-frequency stock returns. Mathematical Problems in Engineering. 2016. DOI: 10.1155/2016/4907654

33. Andersen T. G., Bollerslev T. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. International Economic Review. 1998;39(4):885-905. DOI: 10.2307/2527343


Review

For citations:


Aldeki R.G. Predicting Financial Market Volatility with Modern Model and Traditional Model. Finance: Theory and Practice. 2025;29(2):154-165. https://doi.org/10.26794/2587-5671-2025-29-2-154-165

Views: 116


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5671 (Print)
ISSN 2587-7089 (Online)