NEURAL NETWORK MODEL OF DIAGNOSTICS OF STAGES OF DEVELOPING CORPORATE BANKRUPTCY
https://doi.org/10.26794/2587-5671-2018-22-3-112-123
Abstract
About the Authors
S. A. GorbatkovRussian Federation
Dr. Sci. (Engin.), Professor, Honored worker of science of the Republic of Bashkortostan, Professor of the Department of “Mathematics and Informatics”,
Ufa
S. A. Farkhieva
Russian Federation
Cand. Sci. (Engin.), Head of the Department of “Mathematics and Informatics”,
Ufa
References
1. Galushkin A.I. Neural networks: theory bases. Moscow: Goryachaya liniya-Telekom; 2012. 469 p. (In Russ.).
2. Galushkin A.I. The use of neurocomputers in financial activity. URL: http://masters.donntu.org/2007/kita/ bolkunevich/library/galuwkin.htm (accessed 28.08.2017). (In Russ.).
3. Gorbatkov S.A., Polupanov D.V., Makeeva E. Yu., Biryukov A.N. Methodological bases of development of neural network models of economic objects in the conditions of uncertainty. Moscow: Publ. House of “Ekonomicheskaya gazeta”; 2012. 494 p. (In Russ.).
4. Gorbatkov S.A., Farkhieva S.A., Beloliptsev I.I. Neural network and fuzzy methods for modeling corporate bankruptcy diagnostics and forecasting. Moscow: Prometheus; 2018. 371 p. (In Russ.).
5. Beloliptsev I.I., Gorbatkov S.A., Romanov A.N., Farkhieva S.A. Modeling of managerial decisions in the sphere of economy in the conditions of uncertainty. Moscow: Infra-M; 2015. 299 p. (In Russ.).
6. Tikhonov A.N., Arsenin V. Ya. Methods for solving incorrect problems. Moscow: Nauka: Fizmatlit; 1986. 288 p. (In Russ.).
7. Rissanen J. Modeling by shortest data description. Automatica. 1978;14(5):465–471. DOI: 10.1016/0005– 1098(78)90005–5
8. Dolenko S.A. Neural network methods for solving inverse problems. In: 15th All-Russ. sci.-techn. conf. “Neuroinformatics –2013”: Lectures on neuroinformatics (Moscow, 21–25 Jan. 2013). Moscow: NRNU MEPhI; 2013:214–269. (In Russ.).
9. Adler Yu.P., Markova E.V., Granovskii Yu.V. Planning an experiment in the search for optimal conditions. Moscow: Nauka; 1976. 279 p. (In Russ.).
10. Gorskii V.G., Adler Yu.P. Planning of industrial experiments. Moscow: Metallurgiya; 1974. 112 p. (In Russ.).
11. Davydova G.V., Belikov A. Yu. Technique of quantitative assessment of the risk of bankruptcy of enterprises. Upravlenie riskom. 1999;(3):13–20. (In Russ.).
12. Altman E.I., Marco G., Varetto F.Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural network (the Italian experience). Journal of Banking and Finance. 1994;18(3):505–529. DOI: 10.1016/0378– 4266(94)90007–8
13. Cho S., Kim J., Bae J.K.An integrative model with subject weight based on neural network learning for bankruptcy prediction. Expert Systems with Applications. 2009;36(1):403–410. DOI: 10.1016/j.eswa.2007.09.060
14. Udo G. Neural network performance on the bankruptcy classification problem. Computers and Industrial Engineering. 1993;25(1–4):377–380. DOI: 10.1016/0360–8352(93)90300-M
15. Ohlson J.A. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research. 1980;18 (1):109–131. DOI: 10.2307/2490395
16. Altman E.I. Corporate financial distress: A complete guide to predicting, avoiding, and dealing with bankruptcy. New York: Wiley-Interscience Publ.; 1983. 368 p.
17. Shumsky S.A. Bayesian regularization of learning. In: Sci. session of MEPhI 2002. 4th All-Russ. sci.-techn. conf. “Neuroinformatics — 2002”: Lectures on neuroinformatics (Moscow, 23–25 Jan. 2002). Pt. 2. Moscow: NRNU MEPhI; 2002:30–93. URL: http://neurolectures.narod.ru/2002/Shumsky 2002.pdf (accessed 18.05.2018). (In Russ.).
18. MacKay D. Bayesian interpolation. Neural Computation. 1992;4(3):415–447. DOI: 10.1162/neco.1992.4.3.415
19. Makeeva E.U., Neretina E.A. Binary model versus discriminant analysis relating to corporate bankruptcies: The case of Russian construction industry. Journal of Accounting, Finance and Economics. 2013;3(1):65–76.
20. Shevchenko I.V., Khalafyan A.A., Vasil’eva E.Yu. Development of virtual client base for the analysis of solvency of Russian enterprises. Finansy i kredit = Finance and Credit. 2010;(1):13–18. (In Russ.).
Review
For citations:
Gorbatkov S.A., Farkhieva S.A. NEURAL NETWORK MODEL OF DIAGNOSTICS OF STAGES OF DEVELOPING CORPORATE BANKRUPTCY. Finance: Theory and Practice. 2018;22(3):112-123. (In Russ.) https://doi.org/10.26794/2587-5671-2018-22-3-112-123