Preview

Finance: Theory and Practice

Advanced search

FORECASTING COHERENT VOLATILITY BREAKOUTS

https://doi.org/10.26794/2587-5671-2015-0-1-30-36

Abstract

The paper develops an algorithm for making long-term (up to three months ahead) predictions of volatility reversals based on long memory properties of financial time series. The approach for computing fractal dimension using sequence of the minimal covers with decreasing scale (proposed in [1]) is used to decompose volatility into two0dynamic components: specific A (t ) and structural Hµ(t ). We introduce two separate models forA (t ) and Hµ(t ), based on different principles and capable of catching long uptrends in volatility. To test statistical significanceof its abilities we introduce several estimators of conditional and unconditional probabilities of reversals in observed and predicted dynamic components of volatility. Our results could be used for forecasting points of market transition to an unstable state.

About the Authors

A. S. Didenko
Financial university
Russian Federation


M. M. Dubovikov
«INDEX-XX» company
Russian Federation


B. A. Poutko
Financial university
Russian Federation


References

1. Dubovikov M. M., Starchenko N. V., Dubovikov M. S. Dimension of the minimal cover and fractal analysis of time series. Physica A: Statistical Mechanics and its Applications. 2004, vol. 339, no 3-4, pp. 591-608.

2. Bachelier L. Théorie de la spéculation. 1900.

3. Osborne M. F. Brownian motion in the stock market. Operations Research. INFORMS, 1959, vol. 7, no 2, pp. 145-173.

4. Markowitz H. Portfolio selection. The Journal of Finance. Wiley Online Library, 1952. vol. 7, no 1, pp. 77-91.

5. Markowitz H. Portfolio Selection: Efficient Diversification of Investments. John Wiley & Sons, Inc., 1959.

6. Sharpe W. F. JSTOR: The Journal of Business, vol. 39, no. 1 (Jan., 1966), pp. 119-138 // Journal of Business. 1966.

7. Black F., Scholes M. The Pricing of Options and Corporate Liabilities. The Journal of Political Economy. 1973. vol. 81, no 3, pp. 637-654.

8. Fama E. F. The behavior of stock-market prices. Journal of Business. JSTOR, 1965, pp. 34-105.

9. Mandelbrot B. B. Stable Paretian random functions and the multiplicative variation of income. Econometrics. JSTOR, 1961. pp. 517-543.

10. Mandelbrot B. B. The Stable Paretian Income Distribution when the Apparent Exponent is Near Two. International Economic Review. 1963, vol. 4, no 1, pp. 111-115.

11. Engle R. F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica. JSTOR, 1982. pp. 987-1007.

12. Bollerslev T. Generalized autoregressive conditional heteroskedasticity // Journal of Econometrics. Elsevier, 1986, vol. 31, no 3. pp. 307-327.

13. Nelson D. B. Conditional heteroskedasticity in asset returns: A new approach. Econometrica. JSTOR, 1991, pp. 347-370.

14. Guillaume D. M. et al. From the bird’s eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets. Finance and stochastics. Springer, 1997. vol. 1, no 2, pp.95-129.

15. Müller U. A. et al. Volatilities of different time resolutions - Analyzing the dynamics of market components. Journal of Empirical Finance. 1997, no 4, pp. 213-239.

16. Dubovikov M. M., Starchenko N. V., Dubovikov M. S. Dimension of the minimal cover and fractal analysis of time series. Physica A: Statistical Mechanics and its Applications. 2004, vol. 339, no 3-4, pp. 591-608.

17. Dubovikov M. M., Starchenko N. V. Ekonofizika i fraktal’nyi analiz finansovykh vremennykh riadov [Econophysics and fractal analysis of financial time series]. Uspekhi Fizicheskikh Nauk - Advances in Physical Sciences, 2011, vol. 181, no. 7, p. 779. (In Russ.)

18. Putko B. A., Didenko A. S., Dubovikov M. M. Model’ volatil’nosti obmennogo kursa valiut (RUR/USD), postroennaia na osnove fraktal’nykh kharakteristik finansovogo riada [Model of volatility in exchange rate (RUR / USD) built on the basis of fractal characteristics of the financial series]. PRIKLADNAIA EKONOMETRIKA - Applied Econometrics, 2014, vol. 36, no. 4. pp. 79-87. (In Russ.)

19. Achelis S. B. Technical Analysis from A to Z. Irwin Professional Publishing, 1995.

20. Raftopoulos S. Zigzag Validity.TECHNICAL ANALYSIS OF STOCKS AND COMMODITIES MAGAZINE EDITION. TECHNICAL ANALYSIS, INC, 2002, vol. 20, no 8. pp. 28-33.


Review

For citations:


Didenko A.S., Dubovikov M.M., Poutko B.A. FORECASTING COHERENT VOLATILITY BREAKOUTS. Finance: Theory and Practice. 2015;(1):30-36. (In Russ.) https://doi.org/10.26794/2587-5671-2015-0-1-30-36

Views: 930


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5671 (Print)
ISSN 2587-7089 (Online)