Preview

Finance: Theory and Practice

Advanced search

Volatility of Returns in Stock Market Investments: A Study of BRICS Nations

https://doi.org/10.26794/2587-5671-2023-27-2-87-98

Abstract

Fluctuations in returns from investment in stocks make these risky. This factor should be kept in mind in stock investment decisions, which determines the relevance of this research. Through the study, the volatility in the stock returns of BRICS nations is analysed for inferring on the riskiness associated with investing in the respective nations, which is the aim of the research. For this study, the daily returns of five indexes representing each of the nation namely Ibovespa (Brazil), Moex (Russia), Nifty 50 (India), Hang Seng Index (HSI, China), and FTSE/JSE All Share Index (JALSH, South Africa) for a period of 14 years are collected and analysed. Both unconditional and conditional volatility in returns is analysed for each of the nations for imparting clearer and more comprehensive picture of the volatility in returns. Such an in-depth and long period analysis of volatility of the returns of the emerging BRICS economies is a novelty of the research that determined that no volatility model can be said as perfect for all economies for all time. The GARCH (1, 1) model was used to study for the returns of all the five indexes. The results of the study point out that the daily returns of all these indexes are heteroscedastic, implying presence of varying variance. Accordingly, the study м that the BRICS nations’ index returns are more volatile and riskier, and authors are recommended to invest in those indexes with lesser conditional volatility.

About the Authors

N. Pankunni
University of Calicut
India

Natasha Pankunni - Assis. Prof., Department of Commerce and Management Studies, School of Business Studies

Malappuram, Kerala


Competing Interests:

The authors have no conflicts of interest to declare



S. Rajitha Kumar
Cochin University of Science and Technology
India

S. Rajitha Kumar - PhD, Prof., School of Management Studies

Kochi, Kerala


Competing Interests:

The authors have no conflicts of interest to declare



References

1. Officer R. R. The variability of the market factor of the New York Stock Exchange. The Journal of Business. 1973;46(3):434–453. DOI: 10.1086/295551

2. Merton R. C. An intertemporal capital asset pricing model. Econometrica. 1973:41(5):867–887. DOI: 10.2307/1913811

3. Engle R. F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica. 1982;50(4):987–1007. DOI: 10.2307/1912773

4. Bollerslev T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics. 1986;31(3):307–327. DOI: 10.1016/0304–4076(86)90063–1

5. Engle R. F., Ng V. K. Measuring and testing the impact of news on volatility. The Journal of Finance. 1993;48(5):1749–1778. DOI: 10.1111/j.1540–6261.1993.tb05127.x

6. Engle R. F. Autoregressive conditional heteroscedasticity with estimates of the stock volatility and the Crash of 87: Discussion. The Review of Financial Studies. 1990;3(1):103–106.

7. Zakoian J.-M. Threshold heteroskedastic models. Journal of Economic Dynamics and Control. 1994;18(5):931–955. DOI: 10.1016/0165–1889(94)90039–6

8. Nelson D. B. Conditional heteroscedasticity in asset returns: A new approach. Econometrica. 1991;59(2):347–370. DOI: 10.2307/2938260

9. Glosten L. R., Jaganathan R., Runkle D. E. Relationship between the expected value and volatility of the nominal excess returns on stocks. The Journal of Finance. 1993;48(5):1779–1801. DOI: 10.1111/j.1540–6261.1993.tb05128.x

10. Taylor S. J. Modelling financial time series. New York, NY: John Wiley & Sons, Inc.; 1986. 268 p.

11. Schwert G. W., Seguin P. J. Heteroskedasticity in stock returns. The Journal of Finance. 1990;45(4):1129–1155. DOI: 10.1111/j.1540–6261.1990.tb02430.x

12. Ogum G., Beer F., Nouyrigat G. Emerging equity market volatility: An empirical investigation of markets in Kenya and Nigeria. Journal of African Business. 2005;6(1–2):139–154. DOI: 10.1300/J156v06n01_08

13. Balaban E., Bayar A. Stock returns and volatility: Empirical evidence from fourteen countries. Applied Economics Letters. 2005;12(10):603–611. DOI: 10.1080/13504850500120607

14. Uppal J. Y., Mangla I. U. Market volatility, manipulation, and regulatory response: A comparative study of Bombay and Karachi stock markets. The Pakistan Development Review. 2006;45(4):1071–1083. DOI: 10.30541/v45i4IIpp.1071–1083

15. Dennis P., Mayhew S., Stivers C. Stock returns, implied volatility innovations, and the asymmetric volatility phenomenon. The Journal of Financial and Quantitative Analysis. 2006;41(2):381–406. DOI: 10.1017/S 0022109000002118

16. Guo H., Savickas R. Average idiosyncratic volatility in G7 countries. The Review of Financial Studies. 2008;21(3):1259–1296. DOI: 10.1093/rfs/hhn043

17. Alberg D., Shalit H., Yosef R. Estimating stock market volatility using asymmetric GARCH models. Applied Financial Economics. 2008;18(15):1201–1208. DOI: 10.1080/09603100701604225

18. Tudor C. An empirical study on risk-return tradeoff using GARCH-class models: Evidence from Bucharest Stock Exchange. In: Proc. Int. conf. on business and economy — ICBE‑2008. (Constanța, 6–8 November, 2008). Constanța; Spiru Haret University; 2008.

19. Bartram S. M., Brown G., Stulz R. M. Why are U.S. stocks more volatile? The Journal of Finance. 2012;67(4):1329–1370. DOI: 10.1111/j.1540–6261.2012.01749.x

20. Wang Y., Wu C. Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models? Energy Economics. 2012;34(6):2167–2181. DOI: 10.1016/j.eneco.2012.03.010

21. Lim C. M., Sek S. K. Comparing the performances of GARCH-type models in capturing the stock market volatility in Malaysia. Procedia Economics and Finance. 2013;5:478–487. DOI: 10.1016/S 2212–5671(13)00056–7

22. Nalina K. B. Stock market volatility: A case study in Indian stock market. Ph.D. in management science thesis. Mysore: University of Mysore; 2011. 292 p. URL: https://shodhganga.inflibnet.ac.in/handle/10603/15890

23. Campbell J. Y., Lettau M., Malkiel B. G., Xu Y. Have individual stocks become more volatile? An empirical exploration of idiosyncratic risk. The Journal of Finance. 2001;56(1):1–43. DOI: 10.1111/0022–1082.00318

24. Zhang Q., Jaffry S. Global financial crisis effects on volatility spillover between Mainland China and Hong Kong stock markets. Investment Management and Financial Innovations. 2015;12(1):26–34. URL: https://puredev.port.ac.uk/ws/portalfiles/portal/5116715/JAFFRY_2015_cright_IMFI_Global_financial_crisis_effects_on_volatility_spillover.pdf

25. Tamilselvan M., Vali S. M. Forecasting stock market volatility — evidence from Muscat security market using GARCH models. International Journal of Commerce & Finance. 2016;2(1):37–53. URL: https://oaji.net/articles/2017/2748–1485002113.pdf

26. Sharma P., Vipul. Forecasting stock market volatility using Realized GARCH model: International evidence. The Quarterly Review of Economics and Finance. 2016;59:222–230. DOI: 10.1016/j.qref.2015.07.005

27. Moreira A., Muir T. Volatility-managed portfolios. The Journal of Finance. 2017;72(4):1611–1644. DOI: 10.1111/jofi.12513

28. Carvalho D. How do financing constraints affect firms’ equity volatility? The Journal of Finance. 2018;73(3):1139–1182. DOI: 10.1111/jofi.12610

29. Seoane H. D. Time-varying volatility, default, and the sovereign risk premium. International Economic Review. 2019;60(1):283–301. DOI: 10.1111/iere.12353

30. Bollerslev T., Meddahi N., Nyawa S. High-dimensional multivariate realized volatility estimation. Journal of Econometrics. 2019;212(1):116–136. DOI: 10.1016/j.jeconom.2019.04.023

31. Selmi R., Bouoiyour J., Hammoudeh S. Common and country-specific uncertainty fluctuations in major oil-producing countries: A comparative study. Journal of Economic Integration. 2020;35(4):724–750. DOI: 10.11130/jei.2020.35.4.724

32. Kishor N., Singh R. P. Stock return volatility effect: Study of BRICS. Transnational Corporations Review. 2014;6(4):406–418. DOI: 10.5148/tncr.2014.6406

33. Hunzinger C. B., Labuschagne C. C.A., Boetticher S. T. Volatility skews of indexes of BRICS securities exchanges. Procedia Economics and Finance. 2014;14:263–272. DOI: 10.1016/S 2212–5671(14)00711–4

34. Kang S. H., McIver R., Yoon S.-M. Modeling time-varying correlations in volatility between BRICS and commodity markets. Emerging Markets Finance & Trade. 2016;52(7):1698–1723. DOI: 10.1080/1540496X.2016.1143248

35. Boubaker H., Raza S. A. A wavelet analysis of mean and volatility spillovers between oil and BRICS stock markets. Energy Economics. 2017;64:105–117. DOI: 10.1016/j.eneco.2017.01.026

36. Gujarati D. N., Porter D. C. Basic econometrics. New York, NY: McGraw-Hill/Irwin; 2009. 944 p. 37. Mandelbrot B. B. The variation of certain speculative prices. The Journal of Business. 1963;36(4):394–419. DOI: 10.1086/294632


Review

For citations:


Pankunni N., Rajitha Kumar S. Volatility of Returns in Stock Market Investments: A Study of BRICS Nations. Finance: Theory and Practice. 2023;27(2):87-98. https://doi.org/10.26794/2587-5671-2023-27-2-87-98

Views: 512


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5671 (Print)
ISSN 2587-7089 (Online)