THE USE OF FUZZY LINEAR REGRESSION IN THE MODEL OF TECHNOLOGICAL KNOWLEDGE GROWTH
Abstract
Fuzzy linear regression is used to estimate the parameters of the Botazzi-Peri model of technological knowledge growth, while classical linear regression is used to evaluate the parameters. In this paper, the parameters are defi ned as fuzzy values. As a result, the model volume of technological knowledge is characterized by a set of possible values rather than by a single number. The position in a series of possible values for a particular indicator characterizing a country, to some extent, refl ects the effectiveness of R & D in this country. If the fi gure is close to the most probable values of the model (when the value of the membership function is close to one), the effectiveness of R & D is quite typical. Closeness to peripheral values (when the value of the membership function is close to zero) occurs in two cases: if the effi ciency of R & D is atypically high or atypically low. The use of fuzzy regression allows to trace the dynamics of changes in effectiveness. The calculations were performed using the same data on body of technological knowledge in developed countries as in Botazzi and Peri work.
About the Authors
E. S. VolkovaRussian Federation
PhD (Physics&Mathematics), Associate Professor, the „Mathematics” Chair
V. B. Gisin
Russian Federation
PhD (Physics&Mathematics), Professor, Head of the „Mathematics” Chair
References
1. Гохберг Л. М., Кузнецова Т. Е., Рудь В. А. Анализ инновационных режимов в российской экономике: методологические подходы и первые результаты // Форсайт. 2010. Т. 4. №. 3. С. 18–30 / Gokhberg L.M., Kuznetsova T.E., Rud V.A. The analysis of the innovative modes in the Russian economy: methodological approaches and first results // Forsythe. 2010. T. 4. No. 3. P. 18–30.
2. Лосева О. В., Дресвянников В. А. Методология оценки интеллектуального потенциала региона в условиях инновационного развития // Вестник Финансового университета. 2014. № 6 (84). С. 37–49 / Loseva O.V., Dresvyannikov V.A. Metodologiya of an assessment of intellectual potential of the region in the conditions of innovative development // Bulletin of Financial university [Metodologija ocenki intellektual’nogo potenciala regiona v uslovijah innovacionnogo razvitija]. 2014. No. 6 (84). P. 37–49.
3. Aghion P., Howitt P. A Model of Growth Through Creative Destruction // Econometrica. 1992. Т. 60. С. 323–351. 4. Romer P.M. Endogenous Technological Change // Journal of Political Economy. 1990. Т. 98. № 5, Part 2. Р. 71–102.
4. Grossman G., Helpman E. Innovation and growth in the world economy. Cambridge, MA: MIT Press, 1991. 360 Р.
5. Segerstrom P. S. Endogenous growth without scale effects // American Economic Review. 1998. Р. 1290–1310.
6. Jones C.I. Time series tests of endogenous growth models // The Quarterly Journal of Economics. 1995. P. 495–525.
7. Jones C.I. R & D-based models of economic growth // Journal of political Economy. 1995. Р. 759–784.
8. Jones C.I. Growth and ideas // Handbook of economic growth. 2005. Т. 1. Р. 1063–1111.
9. Bottazzi L., Peri G. The International Dynamics of R&D and Innovation in the Long Run and in The Short Run // The Economic Journal. 2007. Т. 117. №. 518. С. 486–511.
10. Bottasso A., Castagnetti C., and Conti M. R&D, Innovation and Knowledge Spillovers: A Reappraisal of Bottazzi and Peri (2007) in the Presence of Cross Sectional Dependence // Journal of Applied Econometrics. 2015. Т. 30 № 2. С. 350–352.
11. Shackle G.L. S. Decision, order, and time in human affairs. Oxford University Press, 1961. 330 Р. 13. Dymowa L. Soft computing in economics and finance. Springer: New York, Heidelberg, 2011. С. 295. 14. Bojadziev G., Bojadziev M. Fuzzy logic for business, fi nance, and management. London, Singapore: World Scientifi c Publishing Co., Inc., 2007. 232 C.
12. Buckley J.J., Eslami E., Feuring T. Fuzzy Mathematics in Economics and Engineering. Physica-Verlag: New York, Heidelberg, 2002. 272 Р.
13. Dubois D., Prade H. Possibility theory and its applications: Where do we stand // Mathware and Soft Computing. 2011. Т. 18. № 1. С. 18–31.
14. Kahraman C. (ed.) Fuzzy Engineering Economics with Applications. Berlin, Heidelberg: Springer, 2008. С. 390.
15. Tanaka H., Uejima S., Asai K. Linear regression analysis with fuzzy model // IEEE Trans. Systems Man Cybern. 1982. Т. 12. С. 903–907.
16. Heshmaty B., Kandel A. Fuzzy linear regression and its applications to forecasting in uncertain environment // Fuzzy Sets and Systems. 1985. Т. 15. № 2. С. 159–191.
17. Tanaka H., Watada J. Possibilistic linear systems and their application to the linear regression model // Fuzzy sets and systems. 1988. Т. 27. № 3. Р. 275–289.
18. Pedrycz W. From fuzzy data analysis and fuzzy regression to granular fuzzy data analysis // Fuzzy Sets and Systems. 2014 (Available online 26 April 2014).
19. http://qed.econ.queensu.ca/jae/2015-v30.2/bottasso-castagnetti-conti/
20. Хансен Л. П. Последствия неопределенности для экономического анализа // Вестник Финансового университета. 2015. № 2 (86). С. 6–12 / Hansen L.P. Uncertainty consequences for the economic analysis [Posledstvija neopredelennosti dlja jekonomicheskogo analiza] // Bulletin of Financial university. 2015. No. 2 (86). P. 6–12.
21. Назарова Ю. А. Прогнозирование мировых цен на нефть по нечисловой экспертной информации // Вестник Финансового университета. 2015. № 3 (87). С. 155–160 / Nazarova Yu.A. Forecasting of the world prices for oil according to non-numerical expert information [Prognozirovanie mirovyh cen na neft’ po nechislovoj jekspertnoj informacii] // Bulletin of Financial university. 2015. No. 3 (87). P. 155–160.
Review
For citations:
Volkova E.S., Gisin V.B. THE USE OF FUZZY LINEAR REGRESSION IN THE MODEL OF TECHNOLOGICAL KNOWLEDGE GROWTH. Finance: Theory and Practice. 2015;(5):97-104. (In Russ.)