Preview

Finance: Theory and Practice

Advanced search

Can Stock Analysts Predict Market Risk? New Evidence from Copula Theory

https://doi.org/10.26794/2587-5671-2019-23-1-38-48

Abstract

We assess investment value of stock recommendations from the standpoint of market risk. We match I/B/E/S (Institutional Brokers’ Estimates System) consensus recommendations issued in January 2015 for a cross-section of u.S. public equities with realized volatility of these papers, showing that these recommendations signifcantly correlate with subsequent changes in market risk. Thus, the results indicate that to some extent the analysts can predict an increase or decrease in risk, which can beneft asset management. However, the relationship between the recommendations and the risk is not linear and depends on the specifc recommendation. using a semi-parametric copula model, we fnd recommendation levels to be associated with future changes in volatility. We further fnd this relationship to be asymmetric and most pronounced among the best-rated stocks which experience largest volatility declines. We conduct a trading simulation showing how stock selection based on such ratings can lead to a reduction in portfolio-level value-at-risk.

About the Author

I. S. Medovikov
Brock university
Canada

Ivan S. Medovikov Associate Professor at the Department of Economi, Brock University, director at Spartan Fund Management, Inc., a Toronto-based alternative asset management frm, and is a managing partner of Price Street, Inc.

Ontario



References

1. Stickel S. The anatomy of the performance of buy and sell recommendations. Financial Analysts Journal. 1995;51(5):25–39. DOI: 10.2469/faj.v51.n5.1933

2. Womack K. L. Do brokerage analysts’ recommendations have investment value? The Journal of Finance. 1996;51(1):137–167. DOI: 10.1111/j.1540–6261.1996.tb05205.x

3. Barber B., Lehavy R., McNichols M., Trueman B. Can investors proft from the prophets? Security analyst recommendations and stock returns. The Journal of Finance. 2001;56(2):531–563. DOI: 10.1111/0022–1082.00336

4. Jegadeesh N., Kim W. Value of analyst recommendations: International evidence. Journal of Financial Markets. 2006;9(3):274–309. DOI: 10.1016/j.fnmar.2006.05.001

5. Green T.C. The value of client access to analyst recommendations. The Journal of Financial and Quantitative Analysis. 2006;41(1):1–24. DOI: 10.1017/S0022109000002404

6. Ivković Z., Jegadeesh N. The timing and value of forecast and recommendation revisions. Journal of Financial Economics. 2004;73(3):433–463. DOI: 10.1016/j.jfneco.2004.03.002

7. Barber B.M., Lehavy R., Trueman B. Ratings changes, ratings levels, and the predictive value of analysts’ recommendations. Financial Management. 2010;39(2):533–553. DOI: 10.1111/j.1755–053X.2010.01083.x

8. Jegadeesh N., Kim J., Krische S.D., Lee C.M.C. Analyzing the analysts: When do recommendations add value? The Journal of Finance. 2004;59(3):1083–1124. DOI: 10.1111/j.1540–6261.2004.00657.x

9. Medovikov I. Can analysts predict rallies better than crashes? Finance Research Letters. 2014;11(4):319–325. DOI: 10.1016/j.frl.2014.08.001

10. Loh R.K., Stulz R.M., 2011. When are analyst recommendation changes influential? The Review of Financial Studies. 2011;24(2):593–627. DOI: 10.1093/rfs/hhq094

11. Devos E., Hao W., Prevost A. K., Wongchoti U. Stock return synchronicity and the market response to analyst recommendation revisions. Journal of Banking & Finance. 2015;58:376–389. DOI: 10.1016/j.jbankfn.2015.04.021

12. Sklar A. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris. 1959;8:229–231.

13. Patton A.J. Modelling asymmetric exchange rate dependence. International Economic Review. 2006;47(2):527– 556. DOI: 10.1111/j.1468–2354.2006.00387.x

14. Joe H. Multivariate models and multivariate dependence concepts. Boca Raton, FL: CRC Press; 1997. 424 p. (Monographs on Statistics and Applied Probability. Vol. 73).

15. Nelsen R.B. An introduction to copulas. New York: Springer-Verlag; 2006. 272 p. (Springer Series in Statistics).

16. Cherubini U., Luciano E., Vecchiato W. Copula methods in fnance. Chichester: John Wiley & Sons Ltd.; 2004. 310 p. (Wiley Finance Series).

17. Patton A.J. Copula-based models for fnancial time series. In: Mikosch T., Kreiß J.P., Davis R., Andersen T., eds. Handbook of fnancial time series. Berlin, Heidelberg: Springer-Verlag; 2009:767–785.

18. Joe H., Xu J. J. The estimation method of inference functions for margins for multivariate models. The University of British Columbia. Technical Report. 1996;(166). URL: https://open.library.ubc.ca/cIRcle/collections/facultyresearchandpublications/52383/items/1.0225985 (accessed on 11.01.2019).

19. Knight J., Lizieri C., Satchell S. Diversifcation when it hurts? the joint distributions of real estate and equity markets 1. Journal of Property Research. 2005;22(4):309–323. DOI: 10.1080/09599910600558520

20. Ning C. Dependence structure between the equity market and the foreign exchange market — A copula approach. Journal of International Money and Finance. 2010;29(5):743–759. DOI: 10.1016/j.jimonn.2009.12.002

21. Medovikov I. When does the stock market listen to economic news? New evidence from copulas and news wires. Journal of Banking & Finance. 2016;65:27–40. DOI: 10.1016/j.jbankn.2016.01.004


Review

For citations:


Medovikov I.S. Can Stock Analysts Predict Market Risk? New Evidence from Copula Theory. Finance: Theory and Practice. 2019;23(1):38-48. https://doi.org/10.26794/2587-5671-2019-23-1-38-48

Views: 743


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5671 (Print)
ISSN 2587-7089 (Online)