Preview

Finance: Theory and Practice

Advanced search

Fractal Asset Pricing Models for Financial Risk Management

https://doi.org/10.26794/2587-5671-2019-23-6-117-130

Abstract

The article presents the analysis findings of the problems and prospects of using the fractal markets theory to mathematically predict the price dynamics of assets as part of a financial risk management strategy. The aim of the article is to find out the features of value of bank assets and to develop recommendations for assessing financial risks based on mathematical methods for forecasting economic processes. Theoretical and empirical research methods were used to achieve the aim. The article reveals the features of mathematical modeling of economic processes related to asset pricing in a volatile market. It was proved that using financial mathematics in banking contributes to the stable development of the economy. Mathematical modeling of the price dynamics of financial assets is based on a substantive hypothesis and supported by an adequate apparatus of fractal pair pricing models in order to reveal specific market relations of business entities. According to the authors, the prospects of using forecast models to minimize the financial risks of derivative financial instruments are positive. The authors concluded that the considered methods contribute to managing financial risks and improving forecasts, including operations with derivatives. Besides, the studied fractal volatility parameters proved the predictive power regarding extreme events in financial markets, such as the bankruptcy of Lehman Brothers investment bank in 2008. The relevance of the article is due to the fact that the favorable investment climate and the use of modern financing methods largely depend on the effective financial risk management.

About the Authors

I. Z. Yarygina
Financial University
Russian Federation
Irina Z. Yarygina — Dr. Sci. (Econ.), Professor, Department of World Economy and World Finance


V. B. Gisin
Financial University
Russian Federation
Vladimir B. Gisin — Cand. Sci. (Math.), Professor, Head of the Chair of Information Security


B. A. Putko
Financial University
Russian Federation
Boris A. Putko — Cand. Sci. (Math.), Associate Professor, Department of Data Analysis, Decision Making, and Financial Technologies


References

1. Mandelbrot B.B., Van Ness J.W. Fractional Brownian motion, fractional noises and applications. SIAM Review. 1968;10(4):422–437. DOI: 10.1137/1010093

2. Mandelbrot B.B. When can price be arbitraged efficiently? A limit to the validity of the random walk and martingale models. The Review of Economics and Statistics. 1971;53(3):225–236. DOI: 10.2307/1937966

3. Cont R. Volatility clustering in financial markets: Empirical facts and agent-based models. In: Teyssière G., Kirman A.P., eds. Long memory in economics. Berlin, Heidelberg: Springer-Verlag; 2007:289–309.

4. Pagan A. The econometrics of financial markets. Journal of Empirical Finance. 1986;3(1):15–102. DOI: 10.1016/0927–5398(95)00020–8

5. Cont R. Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance. 2001;1(2):223–236. DOI: 10.1080/713665670

6. Ding Z., Granger C., Engle R. A long memory property of stock market returns and a new model. Journal of Empirical Finance. 1983;1(1):83–106. DOI: 10.1016/0927–5398(93)90006-D

7. Guillaume D., Dacorogna M., Davé R., Müller U., Olsen R., Pictet O. From the bird’s eye view to the microscope: A survey of new stylized facts of the intraday foreign exchange markets. Finance and Stochastics. 1997;1(2):95–129. DOI: 10.1007/s007800050018

8. Hiebert P., Jaccard I., Schüler Y. Contrasting financial and business cycles: Stylized facts and candidate explanations. Journal of Financial Stability. 2018;38:72–80. DOI: 10.1016/j.jfs.2018.06.002

9. Bariviera A.F., Basgall M.J., Hasperué W., Naiouf M. Some stylized facts of the Bitcoin market. Physica A: Statistical Mechanics and its Applications. 2017;484:82–90. DOI: 10.1016/j.physa.2017.04.159

10. Restocchi V., McGroarty F., Gerding E. The stylized facts of prediction markets: Analysis of price changes. Physica A: Statistical Mechanics and its Applications. 2019;515:159–170. DOI: 10.1016/j.physa.2018.09.183

11. Pruna R.T., Polukarov M., Jennings N.R. An asset pricing model with loss aversion and its stylized facts. In: IEEE Symposium Series on Computational Intelligence (SSCI). (Athens, 6–9 Dec. 2016). New York: IEEE; 2016:1–8. DOI: 10.1109/SSCI.2016.7850003

12. Gisin V.B., Shapoval A.B. Two agent based models and market stylized facts. International Journal of Pure and Applied Mathematics. 2008;42(4):521–527.

13. Dhesi G., Ausloos M. Modelling and measuring the irrational behaviour of agents in financial markets: Discovering the psychological soliton. Chaos, Solitons & Fractals. 2016;88:119–125. DOI: 10.1016/j.chaos.2015.12.015

14. LeBaron B., Agent-based computational finance: Suggested readings and early research. Journal of Economic Dynamics and Control. 2000;24(5–7):679–702. DOI: 10.1016/S 0165–1889(99)00022–6

15. Acciaio B., Beiglböck M., Penkner F., Schachermayer W. A model-free version of the fundamental theorem of asset pricing and the super-replication theorem. Mathematical Finance. 2016;26(2):233–251. DOI: 10.1111/mafi.12060

16. Dolinsky Y., Neufeld A. Super-replication in fully incomplete markets. Mathematical Finance. 2018;28(2):483–515. DOI: 10.1111/mafi.12149

17. Shyriaev A. N. Fundamentals of stochastic financial mathematics (in 2 vols.). Moscow: Nauka; 2004. 1018 p. (In Russ.).

18. Cheridito P. Gaussian moving averages, semimartingales and option pricing. Stochastic Processes and their Applications. 2004;109(1):47–68. DOI: 10.1016/j.spa.2003.08.002

19. Rostek S., Schöbel R. A note on the use of fractional Brownian motion for financial modeling. Economic Modelling. 2013;30:30–35. DOI: 10.1016/j.econmod.2012.09.003

20. Biagini F., Hu Y., Øksendal B., Zhang T. Stochastic calculus for fractional Brownian motion and applications. London: Springer-Verlag; 2008. 330 p.

21. Schoutens W. Lévy processes in finance: Pricing financial derivatives. Chichester: John Wiley & Sons Ltd; 2003. 170 p.

22. Gisin V.B., Konnov V.V., Sharov V. F. Probabilistic models for analyzing asset pricing in stock markets. Moscow: Financial University; 2012. 152 p. (In Russ.).

23. Borusyak K.K. Application of the Meixner model of the distribution of return on financial assets to the Russian stock market. In: Gisin V.B., Shapoval A.B., eds. Mathematical methods for analyzing financial time series: Coll. sci. pap. Moscow: Financial Academy; 2008:4–23. (In Russ.).

24. Kabanov Y., Safarian M. Markets with transaction costs: Mathematical theory. Berlin, Heidelberg: Springer-Verlag; 2010. 294 p.

25. Gerhold S., Guasoni P., Muhle-Karbe J., Schachermayer W. Transaction costs, trading volume, and the liquidity premium. Finance and Stochastics. 2014;18(1):1–37. DOI: 10.1007/s00780–013–0210-y

26. Guasoni P., Weber M. Dynamic trading volume. Mathematical Finance. 2017;27(2):313–349. DOI: 10.1111/ mafi.12099

27. Navascués M.A., Sebastián M.V., Latorre M. Stock indices in emerging and consolidated economies from a fractal perspective. In: Rojas I., Pomares H., eds. Time series analysis and forecasting: Selected contributions from the ITISE conference. Cham: Springer International Publ.; 2016:113–122.

28. Dubovikov M.M., Starchenko N.V., Dubovikov M.S. Dimension of minimal cover and fractal analysis of time series. Physica A: Statistical Mechanics and its Applications. 2004;339(3–4):591–608. DOI: 10.1016/j. physa.2004.03.025

29. Putko B.A., Didenko A. S., Dubovikov M. M. Exchange rate volatility model (RUR/USD) based on the fractal characteristics of a financial series. Prikladnaya ekonometrika = Applied Econometrics. 2014;(4):79– 87. (In Russ.).

30. Bertrand P.R., Combes J.-L., Dury M.-E., Hadouni D. Overfitting of Hurst estimators for multifractional Brownian motion: A fitting test advocating simple models. Risk and Decision Analysis. 2018;7(1–2):31–49. DOI: 10.3233/RDA-180136

31. Ikeda T. Fractal analysis revisited: The case of the US industrial sector stocks. Economics Bulletin. 2017;37(2):666–674.

32. Ikeda T. A fractal analysis of world stock markets. Economics Bulletin. 2017;37(3):1514–1532.

33. Karp A., Van Vuuren G. Investment implications of the fractal market hypothesis. Annals of Financial Economics. 2019;14(1):1–27. DOI: 10.1142/S 2010495219500015

34. Nika Z., Rásonyi M. Log-optimal portfolios with memory effect. Applied Mathematical Finance. 2018;25(5–6):557–585. DOI: 10.1080/1350486X.2018.1542323

35. Guennoun H., Jacquier A., Roome P., Shi F. Asymptotic behavior of the fractional Heston model. SIAM Journal on Financial Mathematics. 2018;9(3):1017–1045. DOI: 10.1137/17M1142892

36. Bayer C., Friz P., Gatheral J. Pricing under rough volatility. Quantitative Finance. 2016;16(6):887–904. DOI: 10.1080/14697688.2015.1099717

37. Gatheral J., Jaisson T., Rosenbaum M. Volatility is rough. Quantitative Finance. 2018;18(6):933–949. DOI: 10.1080/14697688.2017.1393551

38. Comte F., Renault E. Long memory in continuous-time stochastic volatility models. Mathematical Finance. 1998;8(4):291–323. DOI: 10.1111/1467–9965.00057


Review

For citations:


Yarygina I.Z., Gisin V.B., Putko B.A. Fractal Asset Pricing Models for Financial Risk Management. Finance: Theory and Practice. 2019;23(6):117-130. https://doi.org/10.26794/2587-5671-2019-23-6-117-130

Views: 889


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5671 (Print)
ISSN 2587-7089 (Online)