Fractal Asset Pricing Models for Financial Risk Management
https://doi.org/10.26794/2587-5671-2019-23-6-117-130
Abstract
About the Authors
I. Z. YaryginaRussian Federation
Irina Z. Yarygina — Dr. Sci. (Econ.), Professor, Department of World Economy and World Finance
V. B. Gisin
Russian Federation
Vladimir B. Gisin — Cand. Sci. (Math.), Professor, Head of the Chair of Information Security
B. A. Putko
Russian Federation
Boris A. Putko — Cand. Sci. (Math.), Associate Professor, Department of Data Analysis, Decision Making, and Financial Technologies
References
1. Mandelbrot B.B., Van Ness J.W. Fractional Brownian motion, fractional noises and applications. SIAM Review. 1968;10(4):422–437. DOI: 10.1137/1010093
2. Mandelbrot B.B. When can price be arbitraged efficiently? A limit to the validity of the random walk and martingale models. The Review of Economics and Statistics. 1971;53(3):225–236. DOI: 10.2307/1937966
3. Cont R. Volatility clustering in financial markets: Empirical facts and agent-based models. In: Teyssière G., Kirman A.P., eds. Long memory in economics. Berlin, Heidelberg: Springer-Verlag; 2007:289–309.
4. Pagan A. The econometrics of financial markets. Journal of Empirical Finance. 1986;3(1):15–102. DOI: 10.1016/0927–5398(95)00020–8
5. Cont R. Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance. 2001;1(2):223–236. DOI: 10.1080/713665670
6. Ding Z., Granger C., Engle R. A long memory property of stock market returns and a new model. Journal of Empirical Finance. 1983;1(1):83–106. DOI: 10.1016/0927–5398(93)90006-D
7. Guillaume D., Dacorogna M., Davé R., Müller U., Olsen R., Pictet O. From the bird’s eye view to the microscope: A survey of new stylized facts of the intraday foreign exchange markets. Finance and Stochastics. 1997;1(2):95–129. DOI: 10.1007/s007800050018
8. Hiebert P., Jaccard I., Schüler Y. Contrasting financial and business cycles: Stylized facts and candidate explanations. Journal of Financial Stability. 2018;38:72–80. DOI: 10.1016/j.jfs.2018.06.002
9. Bariviera A.F., Basgall M.J., Hasperué W., Naiouf M. Some stylized facts of the Bitcoin market. Physica A: Statistical Mechanics and its Applications. 2017;484:82–90. DOI: 10.1016/j.physa.2017.04.159
10. Restocchi V., McGroarty F., Gerding E. The stylized facts of prediction markets: Analysis of price changes. Physica A: Statistical Mechanics and its Applications. 2019;515:159–170. DOI: 10.1016/j.physa.2018.09.183
11. Pruna R.T., Polukarov M., Jennings N.R. An asset pricing model with loss aversion and its stylized facts. In: IEEE Symposium Series on Computational Intelligence (SSCI). (Athens, 6–9 Dec. 2016). New York: IEEE; 2016:1–8. DOI: 10.1109/SSCI.2016.7850003
12. Gisin V.B., Shapoval A.B. Two agent based models and market stylized facts. International Journal of Pure and Applied Mathematics. 2008;42(4):521–527.
13. Dhesi G., Ausloos M. Modelling and measuring the irrational behaviour of agents in financial markets: Discovering the psychological soliton. Chaos, Solitons & Fractals. 2016;88:119–125. DOI: 10.1016/j.chaos.2015.12.015
14. LeBaron B., Agent-based computational finance: Suggested readings and early research. Journal of Economic Dynamics and Control. 2000;24(5–7):679–702. DOI: 10.1016/S 0165–1889(99)00022–6
15. Acciaio B., Beiglböck M., Penkner F., Schachermayer W. A model-free version of the fundamental theorem of asset pricing and the super-replication theorem. Mathematical Finance. 2016;26(2):233–251. DOI: 10.1111/mafi.12060
16. Dolinsky Y., Neufeld A. Super-replication in fully incomplete markets. Mathematical Finance. 2018;28(2):483–515. DOI: 10.1111/mafi.12149
17. Shyriaev A. N. Fundamentals of stochastic financial mathematics (in 2 vols.). Moscow: Nauka; 2004. 1018 p. (In Russ.).
18. Cheridito P. Gaussian moving averages, semimartingales and option pricing. Stochastic Processes and their Applications. 2004;109(1):47–68. DOI: 10.1016/j.spa.2003.08.002
19. Rostek S., Schöbel R. A note on the use of fractional Brownian motion for financial modeling. Economic Modelling. 2013;30:30–35. DOI: 10.1016/j.econmod.2012.09.003
20. Biagini F., Hu Y., Øksendal B., Zhang T. Stochastic calculus for fractional Brownian motion and applications. London: Springer-Verlag; 2008. 330 p.
21. Schoutens W. Lévy processes in finance: Pricing financial derivatives. Chichester: John Wiley & Sons Ltd; 2003. 170 p.
22. Gisin V.B., Konnov V.V., Sharov V. F. Probabilistic models for analyzing asset pricing in stock markets. Moscow: Financial University; 2012. 152 p. (In Russ.).
23. Borusyak K.K. Application of the Meixner model of the distribution of return on financial assets to the Russian stock market. In: Gisin V.B., Shapoval A.B., eds. Mathematical methods for analyzing financial time series: Coll. sci. pap. Moscow: Financial Academy; 2008:4–23. (In Russ.).
24. Kabanov Y., Safarian M. Markets with transaction costs: Mathematical theory. Berlin, Heidelberg: Springer-Verlag; 2010. 294 p.
25. Gerhold S., Guasoni P., Muhle-Karbe J., Schachermayer W. Transaction costs, trading volume, and the liquidity premium. Finance and Stochastics. 2014;18(1):1–37. DOI: 10.1007/s00780–013–0210-y
26. Guasoni P., Weber M. Dynamic trading volume. Mathematical Finance. 2017;27(2):313–349. DOI: 10.1111/ mafi.12099
27. Navascués M.A., Sebastián M.V., Latorre M. Stock indices in emerging and consolidated economies from a fractal perspective. In: Rojas I., Pomares H., eds. Time series analysis and forecasting: Selected contributions from the ITISE conference. Cham: Springer International Publ.; 2016:113–122.
28. Dubovikov M.M., Starchenko N.V., Dubovikov M.S. Dimension of minimal cover and fractal analysis of time series. Physica A: Statistical Mechanics and its Applications. 2004;339(3–4):591–608. DOI: 10.1016/j. physa.2004.03.025
29. Putko B.A., Didenko A. S., Dubovikov M. M. Exchange rate volatility model (RUR/USD) based on the fractal characteristics of a financial series. Prikladnaya ekonometrika = Applied Econometrics. 2014;(4):79– 87. (In Russ.).
30. Bertrand P.R., Combes J.-L., Dury M.-E., Hadouni D. Overfitting of Hurst estimators for multifractional Brownian motion: A fitting test advocating simple models. Risk and Decision Analysis. 2018;7(1–2):31–49. DOI: 10.3233/RDA-180136
31. Ikeda T. Fractal analysis revisited: The case of the US industrial sector stocks. Economics Bulletin. 2017;37(2):666–674.
32. Ikeda T. A fractal analysis of world stock markets. Economics Bulletin. 2017;37(3):1514–1532.
33. Karp A., Van Vuuren G. Investment implications of the fractal market hypothesis. Annals of Financial Economics. 2019;14(1):1–27. DOI: 10.1142/S 2010495219500015
34. Nika Z., Rásonyi M. Log-optimal portfolios with memory effect. Applied Mathematical Finance. 2018;25(5–6):557–585. DOI: 10.1080/1350486X.2018.1542323
35. Guennoun H., Jacquier A., Roome P., Shi F. Asymptotic behavior of the fractional Heston model. SIAM Journal on Financial Mathematics. 2018;9(3):1017–1045. DOI: 10.1137/17M1142892
36. Bayer C., Friz P., Gatheral J. Pricing under rough volatility. Quantitative Finance. 2016;16(6):887–904. DOI: 10.1080/14697688.2015.1099717
37. Gatheral J., Jaisson T., Rosenbaum M. Volatility is rough. Quantitative Finance. 2018;18(6):933–949. DOI: 10.1080/14697688.2017.1393551
38. Comte F., Renault E. Long memory in continuous-time stochastic volatility models. Mathematical Finance. 1998;8(4):291–323. DOI: 10.1111/1467–9965.00057
Review
For citations:
Yarygina I.Z., Gisin V.B., Putko B.A. Fractal Asset Pricing Models for Financial Risk Management. Finance: Theory and Practice. 2019;23(6):117-130. https://doi.org/10.26794/2587-5671-2019-23-6-117-130