Comparative Analysis of ARIMA and lSTM Predictive Models: Evidence from Russian Stocks
https://doi.org/10.26794/2587-5671-2020-24-1-14-23
Abstract
About the Authors
A. V. AlzheevRussian Federation
Andrei V. Alzheev — Master’s student, Department of Data Analysis, Decision Making and Financial Technology
R. A. Kochkarov
Russian Federation
Rasul A. Kochkarov — Cand. Sci. (Econ.), Assoc. Prof., Department of Data Analysis, Decision Making and Financial Technology
References
1. Magnus Ya.R., Katyshev P. K., Peresetsky A. A. Econometrics. Beginner course. Moscow: Delo; 2007. 504 p. (In Russ.).
2. Schmidhuber J. Habilitation. System modeling and optimization. Postdoctoral thesis. Munich: Technical University of Munich; 1993. 209 p. (In German).
3. Hochreiter S., Schmidhuber J. Long short-term memory. Neural Computation. 1997;9(8):1735–1780. DOI: 10.1162/ neco.1997.9.8.1735
4. Brownlee J. Time series prediction with LSTM recurrent neural networks in Python with Keras. Machine Learning Mastery. 2016. URL: https://machinelearning mastery.com/time-series-prediction-lstm-recurrent-neuralnetworks-python-keras
5. Gers F. A., Schmidhuber J., Cummins F. Learning to forget: Continual prediction with LSTM. Neural Computation. 2000;12(10):2451–2471. DOI: 10.1162/089976600300015015
6. Kratovich P. V. Neural networks and ARIMA models for predicting quotes. Programmnye produkty i sistemy = Software & Systems. 2011;(1):95–98. (In Russ.).
7. Garcia F., Guijarro F., Moya I., Oliver J. Estimating returns and conditional volatility: A comparison between the ARMA-GARCH-M models and the backpropagation neural network. International Journal of Complex Systems in Science. 2012;1(2):21–26.
8. Krauss C., Do X. A., Huck N. Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research. 2017;259(2):689–702. DOI: 10.1016/j.ejor. 2016.10.031
9. Chung J., Lee D., Seo Y., Yoo C. D. Deep attribute networks. NIPS Workshop on Deep Learning and Unsupervised Feature Learning. 2012;3. URL: http://www.eng.uwaterloo.ca/~jbergstr/files/nips_dl_2012/Paper%2011.pdf
10. Fischer T., Krauss C. Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research. 2018;270(2):654–669. DOI: 10.1016/j.ejor.2017.11.054
11. Eliseeva I. I., ed. Econometrics. Moscow: Finansy i statistika; 2006. 576 p. (In Russ.).
12. Armstrong J. S., Collopy F. Error measures for generalizing about forecasting methods: Empirical comparisons. International Journal of Forecasting. 1992;8(1):69–80. DOI: 10.1016/0169–2070(92)90008-W
13. Hyndman R. J., Athanasopoulos G. Forecasting: Principles and practice. 2nd ed. Melbourne: OTexts; 2018. 382 p.
Review
For citations:
Alzheev A.V., Kochkarov R.A. Comparative Analysis of ARIMA and lSTM Predictive Models: Evidence from Russian Stocks. Finance: Theory and Practice. 2020;24(1):14-23. https://doi.org/10.26794/2587-5671-2020-24-1-14-23